TOXCHEM V4.3

Modeling the Fate of Toxics in Wastewater Treatment Plants

USER'S GUIDE

Copyright ©1992-2014

Hydromantis Environmental Software Solutions, Inc. (HESS, Inc.)

All rights reserved

No part of this work covered by copyright may be reproduced in any form or by any means - graphic, electronic or mechanical, including photocopying, recording, taping, or storage in an information retrieval system - without the prior written permission of the copyright owner.

The information contained within this document is subject to change without notice. HESS, Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. HESS, Inc., shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

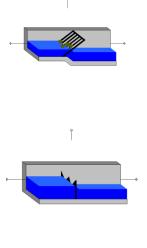
TOXCHEM and all other Hydromantis trademarks and logos mentioned and/or displayed are trademarks or registered trademarks of Hydromantis, Inc. in Canada and in other countries

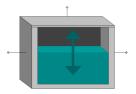
<u>1.</u>	WHAT'S NEW IN VERSION 4.3	5
1.1	NEW UNIT PROCESSES	5
1.2	NEW EMISSION MECHANISM FROM FLOATING OIL SURFACES	6
1.3	NEW DATABASE PROPERTIES	7
1.4	INTERFACE IMPROVEMENTS	8
<u>2.</u>	TOXCHEM INTERFACE BASICS	11
2.1	INTERFACE TERMINOLOGY	11
2.2	INTERFACE COMMANDS/FEATURES	11
<u>3.</u>	TUTORIAL	14
3.1	INTRODUCTION	14
3.2	CREATING THE PLANT LAYOUT	15
3.3	DATA ENTRY	23
3.4	SET EMISSION HOTSPOTS	27
3.5	RENAME THE LAYOUT	28
3.6	SAVE THIS PLANT LAYOUT	28
3.7	RUNNING THE SIMULATION	28
3.8	VIEW AND EXPORT RESULTS	29
3.9	GENERATE REPORT	36
3.1	0 ADDING PARAMETERS ON THE QUICK ADJUST TOOLBAR	37
3.1	1 ADDING USER-DEFINED COMPOUNDS	41
3.1	2 SENSITIVITY ANALYSIS	44
3.1	3 USE OF BACK-SOLVER FEATURE	47
<u>4.</u>	ADDITIONAL TOPICS	51
4.1	IMPORTING V3 LAYOUTS	51
4.2	HOW TO CREATE USER DEFINED GROUP OF CONTAMINANTS	52
4.3	HOW TO SET SRT BASED WASTAGE IN SECONDARY CLARIFIER	54
4.4	HOW TO CREATE MULTIPLE LAYOUTS IN SAME FILE	57
4.5	HOW TO CHANGE THE PH GLOBALLY AND LOCALLY	58
4.6	HOW TO ZOOM IN-ZOOM OUT	59
4.7	HOW TO TURN ON/OFF THE PROCESS TABLE, FATE SUMMARY AND HOT SPOTS TOOL BARS	59
4.8	HOW TO REARRANGE THE FLOW LINES	61

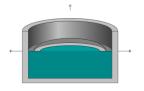
TOXCHEM V4.3	2014
4.9 HOW TO READ CONTAMINANT CONCENTRATION FROM EXCEL FILE	62
4.10 HOW TO VIEW STREAM PROPERTY QUICKLY	66
4.11 HOW TO IMPORT FILE DATA FOR VARIABLES ON QUICK ADJUST TOOLBAR	67
<u>5.</u> <u>APPENDIX-A</u>	70
5.1 VERSION 4	70
5.2 VERSION 4.1	70
5.3 VERSION 4.3	70

1.What's New in Version 4.3

The TOXCHEM V4.3 builds on the features of TOXCHEM V4.2 which was released in 2013. TOXCHEM V4.3 includes a variety of new processes to model the air emissions at the wastewater treatment plant, including a bar screen, V-notch weir, membrane bioreactor, water scrubber, closed surge tank and floating roof storage tank. In addition, the ability to model air emissions from a layer of oil floating on the water surface has been added to preliminary treatment processes, with the inclusion of four procedures for estimating the emission rates. To further improve the ease of use and functionalities of software, selected new features are added to the Graphical User Interface. A brief introduction to new features of TOXCHEM V4.3 is provided below.


1.1 NEW UNIT PROCESSES


Bar Screen - As wastewater passes through the bars of the bar screen process, resistance to the flow dissipates energy, which can cause turbulence and eddies, thereby resulting in air emissions. The bar screen emission model is developed by converting the head loss in the process to dissipated energy, which is then used to estimate the surface mass transfer coefficient for volatilization.


Weir Process - The weir process is provided as a unit for estimating air emission losses of organic compounds as water drops over a V-notch (saw-tooth) weir. The weir model is one of two volatilization mechanisms in primary and secondary clarifiers, surface volatilization being the other mass transfer mechanism. The volatilization models for weirs involving primary- and secondary-treated wastewater as proposed in Pincince (1991) are used.

Closed Surge Tank - The closed surge tank is a vessel in which the volume of wastewater in tank changes over time. The emissions from this tank take place during filling. As the wastewater volume fills the tank during the specified time period, an equivalent volume of headspace air is expelled through an opening in the cover, such as a vent stack or open grate. The model for this unit process assumes that the headspace air inside the tank is at equilibrium with the water phase.

Floating Roof Tank - The emission model for floating roof tank assumes that the main source of air emission from this tank is the exposed clingage of water/oil layer on the periphery of the floating roof tank sidewall. The exposed clingage arises when the floating roof move down due to withdrawal of liquid in the tank. The



composition of the clingage is assumed to be same as the average composition of the influent tank, Exposed clingage height, clingage thickness and exposure time are used to estimate the amount of emissions.

Membrane Bioreactor - A new air emission model is developed for membrane bioreactor (MBR) considering the effect of the coarse bubble backwash of membranes. The process estimates air emissions from normal aeration and coarse bubble backwash. The total air emissions from the unit process is then calculated based on the on the frequency of the coarse bubble backwash.

Water Scrubber - The new unit process is added to transfer the contaminant from an air stream to water stream. The emission model for the scrubber uses the same model as the cooling tower model in Toxchem, only with transfer between liquid and gas phases reversed.

1.2 NEW EMISSION MECHANISM FROM FLOATING OIL SURFACES

The issue of modeling of air emissions of organic compounds from a non-aqueous layer floating on a water surface is of growing concern. Originally, Toxchem software was intended to predict the fate of contaminants in wastewater. In certain specific industries, such as petroleum refining, however, it is possible that the surface of the wastewater in collection or treatment process units may be covered by a floating layer of oil, assumed to be of hydrocarbon origin. Users can specify the fraction of the water surface that is covered by the floating oil layer. In Version 4.3, TOXCHEM provides four procedures for estimating emissions of organic contaminants from a floating oil layer. The first approach (default) is based on mass transfer principles similar to volatilization from a water surface. The additional procedures are provided based on 1) an EPA approach as defined the in the document "Air Emission Models for Waste and Wastewater (EPA, 1994), 2) a modified EPA approach considering the mole fraction correction factor for dilute concentration of contaminant in oil and 3) application of direct experimental mass transfer coefficient in the emission calculations.

👕 No Oil La	yer (Method	3)				×
Data Entry	Advanced	Flow Split				
Water	Ratio for Weirs r Surface Cove yer Mass Tran		Hydrom Hydrom EPA Met EPA Met	100.0 % antis Method antis Method thod - Mole C throm Datab	corrected	
			Ac	cept	Cance	el

1.3 NEW DATABASE PROPERTIES

The organic contaminant database now includes the chemical formula of organic compounds.

Organic Chemical List		Selected Or	ganic Chem	ical Details				
Filter : All 🗸		Dichlorobe	nzene(1,4)	(-P)				
Search by name : dichlorobenzene	Find	Properties	Stripping	Sorption	Biodegradation	Dissocia	tion Reference	s
Search by CAS # :		Name					Dichlorobenzen	e(1,4) (-P)
Dichloro 2-Propanol 1,3		CAS #	¥			_	106-46-7	
Dichloro Propanol 2,3		Molec	ular Formul	а			C6H4CI2	\checkmark
Dichloro-2-Butene 1,2 Dichloro-2-Butene(1,4)		Molec	ular Weight			┖	147.0	g/mol
Dichloro-2-Butene, 1,4		Densi	-			ľ	1.29	q/cm3
Dichloroaniline 2,3			-			L		-
Dichloroaniline(2,3)		Vapor	r Pressure			ļ	1.2	mmHg @25oC
Dichlorobenzene(1,2) (-0)		J Boiling	g Point				173.4	deg C
Dichlorobenzene(1,4) (-P)	_							
Dichlorobenzene,1,2-	+-							

<u>For user-defined organic compounds only</u>, a temperature correction coefficient for Henry's law constant can now be specified by a user in place of the default value of 1.044. Also, for user-defined compounds, the mass transfer adjustment factor for estimation of emissions from an oil layer rather than from water is provided in the same tab for "Stripping" properties.

👕 Organic Chei Organic Chemica Filter : Search by nar Search by CA Anisidine,O-Anthracene Anthracene-W9 Anthraquinone Atenolol Atrazine

Benzal Chloride Benzaldehyde

Organic Chemical List	Selected Organic Chemical Details	
Filter : All 👻	Benzene	
Search by name : benzene	Properties Stripping Sorption Biodegradation Dissociation	References
Search by CAS # :	 Henry's Law Const. @25 C 	Lliq/Lgas
Anisidine,O-	Van't Hoff A for est. H	5.534
Anthracene	0	
Anthracene-W9	Van't Hoff B for est. H	3194.0
Anthraquinone		
Atenolol	Henry's Temperature Coefficient	1.044
Atrazine	Mass Transfer Adjustment Factor for Oil-Covered Surface	0.31499
Aziridine Ethyleneimine	·	
Benzal Chloride		

Accept

Cancel

Lastly, the values of dissociation constants for weak acids and bases have been reviewed an updated as needed.

1.4 INTERFACE IMPROVEMENTS

+ -

Quick Adjust Panel - The new feature in the Quick Adjust Panel allows the user to include the physical-chemical properties of contaminants for quickly changing the values and running the simulations. The values of the parameters on the quick panel can also be imported from a data file.

Color-coding of Stream Lines - Stream lines representing flows of water effluent, air, sludge and oil are now color-coded to make differentiation of the streams more discernible to users. Stream colors can be preferentially adjusted by a user.

Extended Functionality of Back-Solver - The back-solving function has been extended to allow users to solve back from a state variable such as flow to the influent level. Note that when certain state variables such as suspended solids are specified as a process data entry, setting the target value may result in a process mass balance failure.

9

Back Solver	Selected Scenario Details
flow at Sec Clar	Scenario name : flow at Sec Clar
Benzene MAER AS	
Chloroform TSDW BF	Target Solution Influent Manipulation
	○ Contaminant Methanol
	Target Variable Total sludge dry weight 👻
	Process Belt Fitter Press 👻
	Stream State Flow Rate
	Process Secondary Clarifier -
	Stream Effluent -
	· · · · · · · · · · · · · · · · · · ·
	To value 47800.0 m3/d -
	Solution accuracy 0.01 %
•	
Run All S	cenarios Run Selected Scenario
flow at Sec Clar	
Scenario : flow at Sec Clar	
Wastewater Influent 47820.7 m3/d	⇒ [±]

Contaminant Substitution - In larger layouts with many influent process streams, users may find it advantageous to substitute one compound for another during evaluations. For example, a user-defined compound may need to replace the default compound in an assessment. Rather than manually deleting the existing compound and then adding the replacement compound, users may substitute the replacement compound easily.

Accept

Cancel

Toxchem				
File Edit View	Layo	out Database Model Analysis He	el l	
D 🍃 🖥	[]	Insert		
	\times	Delete	i (T Substitute Contaminant
Influents Collection	2	Rename		
Equalization/St	Ē	Duplicate		Replace an existing contaminant in every influent object
Preliminary Tre Grit Chan	8	Print Layout Copy Layout Image to Clipboard		with another (that doesn't currently exist in the layout).
- Bar Scre		Site Properties Emission Hotspots		With : Benzene-W9
API Sepa		Substitute Contaminant 🗲		Accept Cancel
		Reset Inputs to Default Unit Resize Grid		

Archive Layouts - This new feature will bundle any user-defined contaminants that are used in a layout with the layout file so that you can easily send it to a colleague and they can open the layout and be assured that they are using the exact same parameters.

New Summary Table - With this feature, accessed through the "View Summary Results", users can create and view results without the need to export the data to an Excel file.

Output Options				
Table type: Air Effluent Summ	ary	•		
Results				
	А	ir Effluent Sun	nmary (g/d)	
	Air Effluent	Air Effluent(2)		
Acetone	7825.76	0.147831	7825.9	
Benzene	931.919	2.96196	934.881	
Chloroform (Trichloromethane)		69.0256	141773.0	
	23582.6	0.110576	23582.7	
Total	174044.0	72.246	174116.0	

2. TOXCHEM INTERFACE BASICS

2.1 INTERFACE TERMINOLOGY

A brief introduction of TOXCHEM V4.3 interface is presented in this section to familiarize the user to the organization of various features and functionality available in the simulation system. TOXCHEM starts with a program window as shown in **Figure 2-1**. The program window contains the areas for Menu Bar, Tool Bar, Hot Spot Bar, Process Tool Bar and Layout Drawing. It also contains the two quick output tables summarizing fate of contaminant in each unit process and the system.

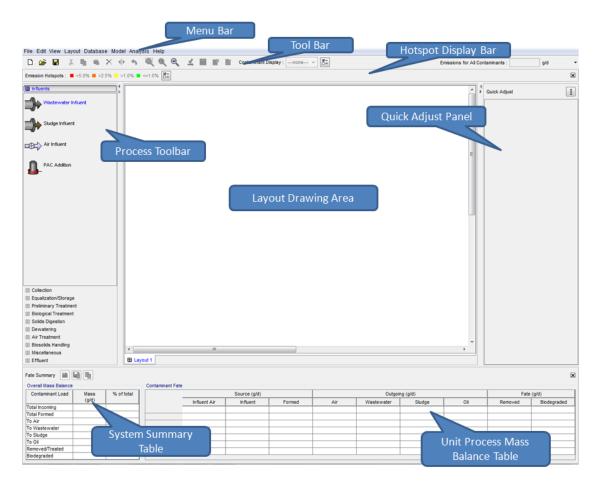
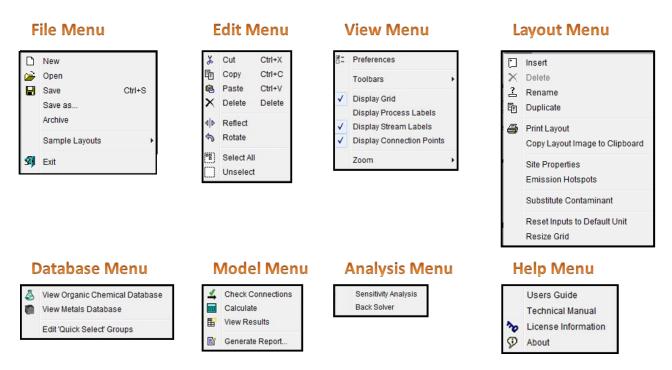



Figure 2-1 TOXCHEM program window

2.2 INTERFACE COMMANDS/FEATURES

Menu Bar - The Menu Bar contains menu items like File, Edit, View, Layout, Databases, Model, Analysis and Help. The various commands available in each menu item are as shown in **Figure 2-2**. The **File** menu contains command for retrieving and saving the TOXCHEM files. The **Edit**

menu provides commands for manipulating the layout on the drawing area. The **View** Menu provides many different options for displaying the layout on the drawing area. The **View** Menu also includes the command for viewing the model Preferences like the system of units, solver accuracy and other user preferences. The **Layout** menu provides command to manage multiple layouts in the same file. It also includes the commands like Site Properties and Emission Hotspots, which are used to set layout specific properties. The **Databases** menu contains commands to access and manipulate the organic contaminant and metal properties database. The **Model** menu includes command for checking, solving and viewing results after a layout is completely defined. The **Analysis** menu provides access to Sensitivity Analysis and Back Solver functions of TOXCHEM. The Help menu may be used to access the User's Guide and Technical Manual.

Figure 2-2 Commands in different Menu items

Tool Bar – The Tool Bar contains buttons for some of most often used commands in TOXCHEM. The menu items and corresponding commands available on the commands on tool bar are as shown in **Figure 2-3.** The Tool Bar also contains a contaminant selection drop down menu which can be used to select a contaminant for which hot spot display and quick outputs needs to be viewed. At the far right end of the Tool Bar, there is a button to access the Contaminant Database.

	File					Edit				View				INIOGEI		Display	Database
New Layout	Open Layout	Save Layout	Cut	Сору	Paste	Delete	Reflect	Rotate	Zoom to Selected	Zoom to Entire Plant	Zoom Out	Check Connection	Calculate	View Report	Generate Report	Hotspot Contaminant Display	Contaminant Database
D	6		*		6	X	4 Þ	<₽	Q	R	Q	4		F	≧ ∕	Contaminant Display : Acetone	

Figure 2-3 Commands on the tool bar and icon representation

Hot Spot Bar – The Hot Spot Bar provides quick access to view and edit the hot spot display setting. It also shows the current color code used for different emission limits.

Process Tool Bar – The Process Tool Bar provides access to all the unit processes available in TOXCHEM for layout building. The process units are compiled in different categories of Influents, Collection, Preliminary Treatment, Biological Treatment, Solid Digestion, Air Treatment, Dewatering, Miscellaneous and Effluents. The unit processes available in any category can be accessed by clicking on the category tab.

Layout Drawing Area – The Layout Drawing Area is used for placing the process units and connecting them to make a process flow scheme for analysis. The layout drawing area is specific to the layout name which appears at the bottom-left of the drawing area.

Unit Process Mass Balance Table – After the layout is solved, the table is used to show the speciation and mass balance of a selected contaminant for all the unit processes in the layout.

System Summary Table – After the layout is solved, the table shows the overall fate of a selected contaminant in the system.

Quick Adjust Panel – The quick adjust panel that can be used to place important model parameters which needs to be changed while conducting different simulations. The model parameters placed on the quick panel can also be read from an EXCEL file.

3.TUTORIAL

3.1 INTRODUCTION

This Tutorial describes various features of TOXCHEM and demonstrates how to conduct a contaminant fate modeling in TOXCHEM. After completing this chapter, user shall be able to understand;

- 1. How to build a plant layout
- 2. How to select a contaminant from the ready to use database
- 3. How to set inputs for process units
- 4. How to set emission hotspots
- 5. How to conduct simulation
- 6. How to view results
- 7. How to export results
- 8. How to add user defined contaminants
- 9. How to conduct sensitivity analysis
- 10. How to use back-solver

In this tutorial, we will be working with a relatively simple treatment process configuration called the *Tutorial Plant*. The schematic form of the plant is shown in **Figure 3-1**. The liquid process train of the *Tutorial Plant* consists of the following processes:

- 1. Equalization basin
- 2. Primary clarifier
- 3. Aeration basin
- 4. Secondary clarifier

The solid process train of the plant handles the waste solids and consists of the following processes:

- 1. Anaerobic digester
- 2. Belt filter press

14

In addition to the liquid and solid trains, the plant consists of an air process train which consists of a single unit process of digester gas cleaning process.

The objective of this simulation study is to quantify the pollution loads of selected contaminants in the liquid, solid and air effluents streams from the plant.

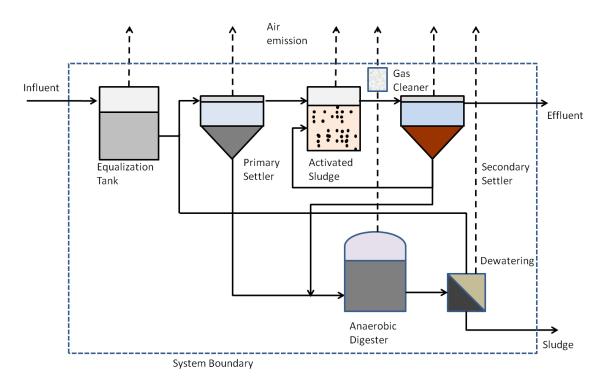


Figure 3-1 Process Schematic for Tutorial Layout

3.2 CREATING THE PLANT LAYOUT

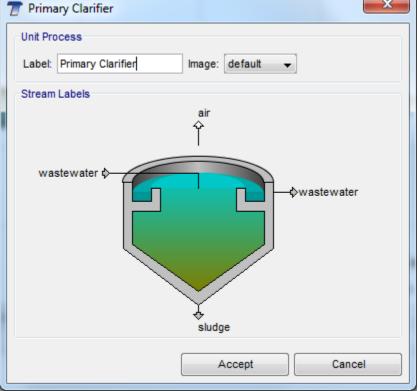
Note to Users of TOXCHEM 3 and earlier Versions: The grid designation system is no longer used since V4. Also the technique for configuring the layout is no longer based on a select and click-in-place action, but a drag-and-drop action.

Selecting Unit Processes To prepare the plant layout, select the unit processes from the unit process table available at left side of the drawing board. The unit process table consists of various tabs containing various unit processes. Left clicking on any tab expands the tab and provides the details of unit processes available in that tab. For building the Tutorial Plant layout, the process units listed in column 1 of Table 3-1 will be used. The Table 3-1 also provides the description of the category under which the process unit is found. To place the unit process on the drawing board, click on the tab under which the process unit is available. Left click on the process unit and drag to the drawing board while keeping the mouse button pressed. Release the mouse button to drop the unit process at the desired location on the drawing board. To remove a unit process from the drawing board, right click the mouse button on the process and click delete from the pop-up window. Another way to delete the unit process is by left clicking on the unit process [a red border around the object appears] and then accessing the **delete** command inside edit menu or on Tool Bar. The delete key on the keyboard can also be used for deleting the unit process [Note: At present TOXCHEM does not support a "Undo" button]. To move a process unit from one cell to other, left click on the process unit and move the cursor to the new location with the mouse button pressed. Release the mouse button to select the new location. The move operation can be performed for a group of selected process units. When all the process units have

Unit Process	Category	Comment
Wastewater Influent	Influents	The influent object are used to specify the wastewater flow rate, contaminants concentration etc.
Equalization	Preliminary Treatment	In this exercise the hydraulic mixed tank is used.
Primary Clarifier	Preliminary Treatment	-
Activated Sludge – Diffused Aeration	Biological Treatment	The diffused aeration unit is selected in this exercise.
Secondary Clarifier	Biological Treatment	-
Pass Through	Miscellaneous	The Pass Through object allows to visualize the properties of the incoming stream
Anaerobic Digester	Solids Digestion	-
Belt Filter Press	Dewatering	Belt filter press process unit is used in this exercise.
Air Treatment	Air Treatment	-
Wastewater Effluent	Effluent	-
Air Effluent	Effluent	Used to collect air from all the unit processes except anaerobic digestion
Air Effluent	Effluent	Used to collect air from the anaerobic digestion object
Sludge Effluent	Effluent	-

Table 3-1 Process Units Required in Tutorial Layout

D 🎯 🖬 🔺	En 🙉	× 🕪 🕯) 🔍 @ (2 🖌 🖬 🖬	Contaminar	t Display :non	e			Emissions for A	All Contaminants :	g/d
mission Hotspots :				× -								
										1		
Influents	Ruent					6	~				Quick Adjust	
	indigen in					Ŷ	Ŷ			[
Sludge Influent						0	4				_	
Air Influent												
PAC Addition												
					÷.	Ŷ		, Ŷ	Ŷ			
				Ŷ				¢.				
							* 60					
Collection Equalization/Storage												
Preliminary Treatmen	t						Ŷ	Ŷ	199.			
Biological Treatment Solids Digestion							* *	*				
Dewatering								ų p				
Air Treatment								L_0				
Biosolids Handling				m								
Miscellaneous										r.	-	
Effluent			PlantABC									
	ð #											
Verall Mass Balance			Contaminant	Fate								
Contaminant Load	Mass (g/d)	% of total		In Provide A Sta	Source (g/d)	1	-	Wastey	Outgoing (g/d)	lae Oil		Fate (g/d)
otal Incoming	Sec 7		-	Influent Air	influent	Formed	Air	vvastev	vater Sluc	ige Oil	Removed	Biodegraded
tal Formed												
Air					1	-						
Wastewater												
o Sludge												
o Oil emoved/Treated												


Figure 3-2 Drawing Board after Placing the Process Units

Making Flow Connections After all the required process units are placed on the drawing board, the flow connections between the unit processes are defined. The process connections required to make the layout are shown in **Table 3-2** which also lists the connection types between the process units.

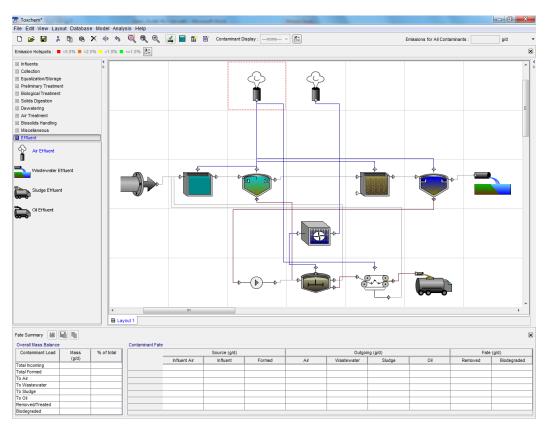
Note: In TOXCHEM, there are four types of connections e.g. wastewater connection, sludge connection, air connection and oil connection available to the user. The nature of the connection points can be checked by right clicking on process unit and then selecting the "Edit Labels" in the popup window. The "Edit Label" window as shown in **Figure 3-3** indicates the nature of the connection. The connection points can also be identified by the fill- colour of arrow which appears when the cursor is placed over the connection point. The wastewater, sludge, air and oil connection points bring up arrow filled with grey, brown, blue and black colour respectively. In TOXCHEM, it is permitted to make a connection between wastewater and sludge lines. However air and oil streams can only be joined to respective colour streams. This means that while the wastewater and sludge connection lines can be interconnected without discretion, the air and oil streams can only be joined to respective connection type.

Table 3-2 Process Connections for Tutorial Layout

From Process	Connection Type	To Process
Influent	Wastewater	Equalization
Equalization	Wastewater	Primary Clarifier
Equalization	Air	Air Effluent
Primary Clarifier	Wastewater	Diffused Air Activated Sludge
Primary Clarifier	Air	Air Effluent
Primary Clarifier	Sludge	Anaerobic Digester
Diffused Air Activated Sludge	Wastewater	Secondary Clarifier
Diffused Air Activated Sludge	Air	Air Effluent
Secondary Clarifier	Wastewater	Effluent Discharge
Secondary Clarifier	Air	Air Effluent
Secondary Clarifier	Sludge	Diffused Air Activated Sludge
Secondary Clarifier	Sludge	Flow Through
Flow Through	Wastewater	Anaerobic Digester
Anaerobic Digester	Wastewater	Equalization
Anaerobic Digester	Air	Air Treatment
Anaerobic Digester	Sludge	Belt Filter Press
Belt Filter Press	Wastewater	Equalization
Belt Filter Press	Air	Air Effluent
Belt Filter Press	Sludge	Sludge Discharge
Air Treatment	Air	Air Effluent 2
Wastewater Effluent		
Air Effluents		
Air Effluents 2		
Sludge Discharge		

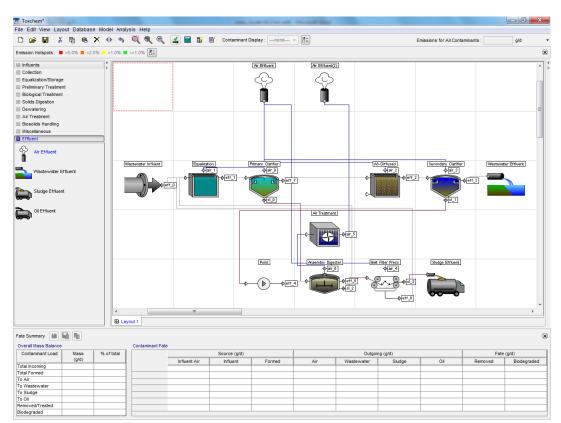
Figure 3-3 Verification of connection types for primary clarifier

To collapse the quick adjust panel, click on the right facing triangle available on the divider between the drawing board and the quick adjust panel. The quick adjust panel can be displayed when necessary by clicking on the left pointing triangle. The process tool bar on the left side can also be collapsed/displayed by using the left and right pointing triangles available on the divider between the process tool bar and the drawing board. For this exercise, collapse the quick adjust panel by clicking on the right pointing triangle.


To make a connection between two process units, place the mouse on the outlet arrow connection of the unit process from where the connection starts. Once the cursor is at the right position, a larger right facing arrow will appears. Press the left mouse button to connect to the outlet and drag the mouse cursor to the inlet connection of the unit while keeping the mouse button pressed. When the cursor is at the proper position on the inlet arrow connection, a larger right facing green colour arrow will appear. Release the mouse button to accept the connection. A connection line between the units should appear after the operation. For deleting a connection, right click on the process unit from where the connection to be deleted originates. In the pop-up window, point the cursor on **Delete Connection** and select the connection to be deleted. Another quick way to delete the connection line is to right click on the line and left click on **Delete Connection** in the pop-up window.

Follow the connection list in **Table 3-2** and repeat the operation to connect all the unit processes. Both inlet and outlets connection points of process units allows multiple connections as long as they are of same type.

Note: TOXCHEM requires that all the outlet connections on all the unit processes are connected to a downstream process unit. Therefore, in a TOXCHEM layout, the wastewater line, sludge line, air line and oil line always terminate at a wastewater effluent, sludge effluent, air effluent and oil effluent process objects [only objects without an output connection] respectively.


When all the connections are complete, verify that all the process connections are valid by left clicking on the green check-mark and arrow button available on the tool bar. Alternatively select the **Check Connection** from the **Model** menu. The missing connections in the layout will be displayed in a pop-up information window. Define the missing connections to complete the layout. You can also rearrange the connection lines by dragging then horizontally or vertically. The completed layout will now appear as in **Figure 3-4**.

Note: the **Check Connection** feature only identifies the missing connections, it cannot determine if the connections are correct.

Figure 3-4 Example Layout with Process Connections

There are several display options in TOXCHEM which are accessible from the **View** menu. To display/hide the process labels select/unselect the **Display Process Labels** in **View** menu. Similarly, to display/hide the stream labels, select/unselect the **Display Stream Labels** in **View**

Figure 3-5 Example Layout with Process and Stream Labels Activated

TOXCHEM automatically decides the path of the connection lines between two unit processes. At times, the paths of the connection lines may almost appear to overlap, and so are not optimally placed. In such situation, the automatically drawn path of the connection lines can be rearranged by the user. The lines can be moved by left clicking on the line and dragging it in the indicated (horizontal or vertical) direction. It shall be noted that only one segment of the line between two break-points (In automatically drawn lines, the break-points exist at each connection point and at the point of change in direction) can be moved at a time. Additional break-points can be created on a line by left clicking on the line where a break-point is necessary and left clicking on **Create Break Point**. The example layout with the connection lines redrawn is as shown in **Figure 3-6**.

[**Note**: if the unit process is moved, all the connection lines originating from the unit processes will be redrawn by TOXCHEM]

	lodel Analysis Help						
🍃 🖬 👗 🖻 🖷 🗙		2, 🛃 🖬 🖺 🗎	Contaminant Display :none	- Z =	Emissions	for All Contaminants :	g/d
sion Hotspots : ■ >5.0% ■ >2.5%	>1.0%						
fluents			Air Effluent	Air Effluent(2)			
ollection			\bigcirc	\bigcirc			
qualization/Storage			(1)	(())			
reliminary Treatment			Y	L Y			
iological Treatment							
olids Digestion			Le la	Li de la constante de la consta			
ewatering							
r Treatment							
osolids Handling							
iscellaneous							
fluent							
Air Effluent							
Air Effluent							
	Wastewater Influent	t Equalization	Primary Clarifier		AS-Diffused Seco	ndary Clarifier Mastewa	er Effluent
Vastewater Effluent	Lovascewater innden	air_1	ofair_0		(As-cillased) (Seco	ofair_3	er er noent j
Wastewater Linders					1-\$ eff_2 \$		
		polett 0	olen - olen	길 []		eff_3	
Sludge Effluent							
	w lateral states and s		0 15 16	4		No.1	
						Y	
Oil Effluent				Air Treatment			
				-+			
			Point	Anaerobic Digester	Slu Slu	dge Effluent	
				Van_o			
				a + + + + + + + + + + + + + + + + + + +			
							
					V CITTA		
		III					F.
	E Layout 1						
	Layout 1						
Summary 🕍 🖬 🌆							
rall Mass Balance	Contaminant I	C.1.					
			1 (2.4	and an of the		1-145
ntaminant Load Mass (g/d)	% of total		Source (g/d)		going (g/d)		(g/d)
I Incoming		Influent Air	Influent Formed	Air Wastewater	Sludge	Oil Removed	Biodegraded
Formed							
dr							
Vastewater							
Sludge							
Sludge Oil moved/Treated							

Figure 3-6 Example Layout with connection lines reorganized

Note: TOXCHEM automatically assigns both the process and stream labels. The process label is assigned when the process object is placed from the process table to the drawing board. A stream label is assigned when the connection point is connected to a downstream object. To change the automatically assigned labels to more user meaningful labels, right click on the process object and select **Edit Labels** in the pop-up window. Enter the new process/stream labels in the process/stream label field of the edit label window. Press **Accept** to confirm the changes.

In this layout, we will change the labels for the secondary clarifier. Right click on the secondary clarifier and select **Edit Labels**. In the Edit Labels window, change the labels as shown in the **Table 3-3**.

To access the second sludge stream of the secondary clarifier, click on the selection box next to the sludge stream and select To-Point and then change the connection label. The Edit Label window after the changes shall be as in **Figure 3-7**.

Table 3-3 New Stream Labels

Stream	New Label
From - AS diffused	AS_eff
To - Air effluent	CI_air
To - Wastewater effluent	CI_eff
To-AS diffused	RAS
To-Point	WAS

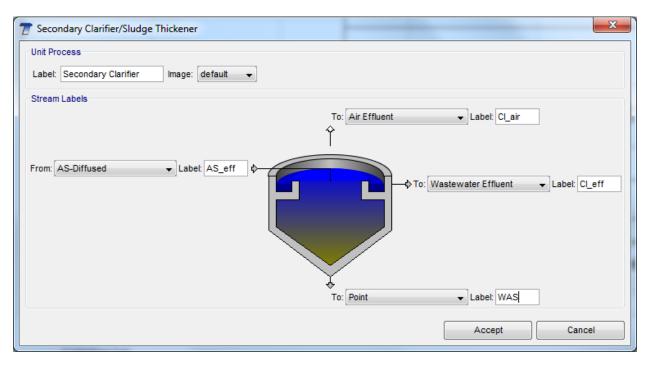


Figure 3-7 Edit Label Window with New Stream Labels

3.3 DATA ENTRY

Note: TOXCHEM organizes data inputs into three categories - Global Data, Layout Specific Data and Unit Process Specific Data. The Global Data form can be accessed by going to **View** Menu and clicking on **Preferences** command. The Global Data controls the display and model settings for all the layouts in the project file. In the Display Settings tab, settings like significant digits in output numbers and Default Unit System (metric, US) are accessible to user. In the Model Settings tab user can set the accuracy of the steady state solver and can choose the biological model for suspended growth processes. The layout specific data is applicable to the layout and can be set for each layout differently. The unit process data is specific for the specific unit process for which the data is provided. In this exercise we will only change the Layout Specific Data and Unit Process Specific Data.

To input the layout specific information, access **Site Properties** in the **Layout** menu. The **Site Properties** window is as shown in **Figure 3-8.** In this exercise, we will leave all the parameters to their default value. Note that the wind speed, which affects surface volatilization is 10 km/h (6.2 mph) and the site elevation and site wide pH value are 100 m (328 ft) and 7.0 respectively.

Note: To enter the data in units other than default units, click on the inverted triangle next to the data entry field. Select the required unit in the popup window. TOXCHEM provides a choice to apply SRT based active biomass correction in the biodegradation rate. By default, the correction factor is not applied.

T Site Properties	×
Data Entry	
Elevation	100.0 m 👻 🗋
Wind Speed	10.0 km/hr 🝷 🗋
Site Wide pH	7.0
Apply SRT Based Active Biomass Correction	
	Accept Cancel

Figure 3-8 Site Properties input window

UNIT PROCESS SPECIFIC DATA

Note: Unit process data Entry is now accomplished by right-clicking on the process unit and then clicking on Edit Parameters in pop-up window

Influent - On the **Data Entry** tab of the Influent data input window, set the wastewater flow to 30,000m³/d (7.925 MGD). The temperature and suspended solids concentration of the influent are set to 40°C (104°F) and 250 mg/L respectively. All the other input parameters are left with their default values. It should be noted that as soon as the default values are changed the display color changes to blue. This change in color helps user keep track of values which are changed in the model. After the changes have been made, the user can view the original default values by pointing the cursor over the field. A tool tip will display the default value. A help button is available at the bottom left of the form to access brief description of the input parameters. The Data Entry form after entering the influent data is shown in **Figure 3-9.**

T Wastewater Influent		X
Data Entry Contaminants Flow Split		
Flow Rate Suspended Solids VSS to SS Ratio Wastewater DOC	30000.0 m3/d 250.0 mg/L 75.0 % 0.0 mg/L	• 🗅 • 🗅 • 🗅
Oil/Grease Concentration	0.0 mg/L	• 🗋
Temperature	40.0 deg C	•
	Accept	Cancel

Figure 3-9 Data Entry tab for the Wastewater Influent

To select and enter the concentration of contaminants, click on the **Contaminants** tab. The **Table 3-4** shows the contaminants and their concentration which will be included in the fate modeling.

Compound	Influent Concentration (ug/L)
Acetone	1,000
Benzene	100
Chloroform (Trichloromethane)	10,000
Methanol	50,000

Table 3-4 Contaminants and Influent Concentrations for Tutorial Layout

Click on the **Add/Remove** button to begin selection of contaminants from the TOXCHEM database. Scroll through the list of contaminants to find the contaminant of interest. To quickly find the contaminant in the list, enter the first letter of the contaminant (or a few letters quickly). Select the contaminant of interest by clicking on it. After selecting the contaminant, click the right-facing arrow button in the center of the window to include the contaminant in the wastewater. The name of the contaminant will appear in the window on the right side of the selection panel. Once all the contaminants have been selected, click on the **Accept** button. Clicking the **Accept** button closes the contaminant selection window and shows data entry window to input the concentration of each selected contaminants. On this screen change the concentrations of the contaminant concentration is as shown in **Figure 3-10**. After changing the concentration click the **Accept** button on the window to close the data entry window.

T Wastewater Influent		×
Data Entry Contaminants Flow Split	t	
Contaminants Add/Remove		
Acetone	1000.0 ug/L	- 🗋
Benzene	100.0 ug/L	- 🗋
Chloroform (Trichloromethane)	10000.0 ug/L	• 🗋
Methanol	50000.0 ug/L	• 🗋
	Accept	Cancel

Figure 3-10 Contaminant tab showing the selected contaminants

Alternatively, the contaminants and their concentrations can be imported from an EXCEL file by using **Import** button on the window. The procedure to import data from an EXCEL file is described later in Chapter 4- Additional Topics.

Equalization Basin-Change the equalization basin depth to 3.5 m and area to $40,000 \text{ m}^2$ Use the inverted triangle next to the data entry field to select the correct units (**Figure 3-11**).

T Equa	lization		×
🔳 Data	Entry Flow Split		
	Liquid Depth	3.5 m	-
	Surface Area	40000.0 m2	
	VSS to SS Ratio	*******	
	Removal Efficiency - Wastewater DOC	0.0 %	-
	Covered		
	Ventilation Rate	m3/hr	
	Local pH value	7.0	
		Accept	Cancel

Figure 3-11 Data Input for equalization basin

J,

Secondary Clarifier - In the secondary clarifier process, open the data entry form by right clicking on the object and selecting **Edit Parameters**. Once in the data entry window, click on the flow split tab to set the flow split fractions of the sludge stream. Depending on in what sequence the stream connections were made, either RAS or WAS stream fraction may appear with an editable field. In this example, the RAS flow split field is editable. Set a flow fraction of 0.98 and enter to see the recalculated WAS split fraction. Alternatively, if the Waste Activated Sludge (WAS) stream shows up with an editable fraction then set the sludge flow split fraction to 0.02. The Flow Split set up screen for the Secondary Clarifier is shown in **Figure 3-12**. Press enter after typing in the split fraction and make sure that the split fraction of other stream is correctly calculated.

T Secondary Clarifier	X
Data Entry Advanced E Flow Split	
Wastewater Flow Split:	
Cl_eff (to Wastewater Effluent)	1.0
Sludge Flow Split:	
Cl_air (to Air Effluent)	1.0
Sludge Flow Split:	
 Specify split fractions 	
RAS (to AS-Diffused)	0.98
WAS (to Point)	0.02
Calculate split fractions based on SRT	
	Accept Cancel

Figure 3-12 Specifying split fraction of the underflow stream

Note: The split fractions are specified for all but one stream. The split fraction for the unspecified stream is calculated as the difference of one minus the sum of the split fractions of other streams.

For all the other process units, use the default values.

3.4 SET EMISSION HOTSPOTS

In TOXCHEM by using the "hotspots" feature, it is possible to visually differentiate the process units which are minor/major source of air emissions in a wastewater treatment facility. When the hotspot feature is activated, the unit processes appear surrounded by different colors, depending on their emission rates. Up to 4 different colors can be used. The classification ranges can be based on either estimated emission rates (g/d or lb/d), or as a percent of the total input mass.

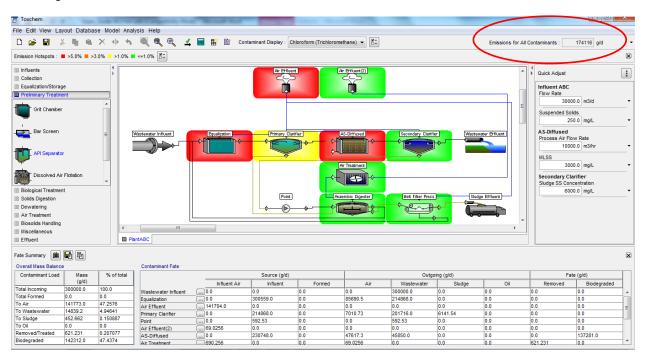
To set the emission limits for the hotspot, access the **Emission Hotspots** from the **Layout** menu item. For this exercise, the ranges designated will be based on % emission rates. The settings are as shown in **Figure 3-13**. After inputting the values, click the **Accept** button to confirm the settings. The hot spots will be only visible if the hot spot tool bar is activated from **View – Toolbars** Menu. It shall be noted that **Emission Hotspots** setting is not applicable to metal, which do not contribute to air emission.

-	T Emiss	ion Hotspot Setup				×		
ſ	🗏 Emiss	ion Hotspot						
	0 0	Base output on percent emissions (%) Base output on loading emissions (g/d)						
	High level emitters greater than 5.0 %							
		Medium level emitters	greater than	3.0	%			
		Low level emitters	greater than	1.0	%			
		Emitters less than the low level	•					
ŀ								
			Accept		Cance	!		

Figure 3-13 Definition of Hot Spot Emission Categories

3.5 RENAME THE LAYOUT

The name of layout appears at the bottom-left of the drawing area. Right-click on the **Layout1** and select Rename from the drop down menu. Enter **PlantABC** in the layout rename window. Press OK to accept the change.


3.6 SAVE THIS PLANT LAYOUT

Save the file as tutorial.tox by selecting Save from the File menu in appropriate directory.

Note: Layout files since Version 4 are designated by the file extension <*.tox>. The file name can be different than the name of the layout given in above section.

3.7 RUNNING THE SIMULATION

Now that the plant schematic has been prepared and necessary data have been entered, it is time to perform simulation. Click on the **Calculate** button on the toolbar to start the calculation. The solver starts the calculation and solves the model. If no errors are encountered, a pop-up window will appear with the message "Layout successfully solved". Click the **OK** button to close the popup window. In Version 4.3, a summary of total air emissions of all compounds is displayed in the upper right corner of the layout. After the layout is solved, the unit processes

Figure 3-14 Model Interface with Emission Hotspots Activated

3.8 VIEW AND EXPORT RESULTS

Note: TOXCHEM provides many different ways of viewing simulation outputs. In addition, the fate summary table and overall system mass balance tables are displayed on-screen for quick review.

After the layout is successfully solved, the simulation results can be viewed. Right click on the object and select **View Results** to view the outputs for an individual object. To view a detailed summary of the simulation results for complete layout, it is better to use the **View Results** button available on the tool bar.

VIEW RESULTS FOR UNIT PROCESS

Right click on the activated sludge tank and select **View Results**. In the output window of the process unit (**Figure 3-15**), click on the various tabs for viewing the values of different parameters. The values for different contaminants can be displayed by selecting the chemical from the drop down menu available at the top left corner of output window. The results for every process unit can be viewed similarly.

Contaminant : Chloroform (Trichloromethane)			×
Influent Process Effluent Effluent-Air Fate Summary			
Flow Rate Total Suspended Solids Volatile SS Fraction Wastewater DOC Temperature Organic Chemical - Cl Organic Chemical - Ct Organic Chemical Loading Contaminant Loading - TSS Basis Fraction of Soluble Chemical Fraction of Sorbed Chemical - Organic Solid Fraction of Sorbed Chemical - Oil Fraction of Sorbed Chemical - DOC Fraction of Sorbed Chemical - PAC	39.8768 2697.91 3854.01 230752.0	mg/L - mg/L deg C ug/L ug/L g/d mg/kg TS dw	* * * * * *
		Close	

Figure 3-15 Output window for Activated Sludge-Diffused Air

Fate summary tab provide the process and overall process emission summary. Open the fate summary tab (**Figure 3-16**) and click on the graph icon at the bottom left of the window for graphical view of the fate summary chart or emission chart.

T Output for :AS-Diffused			x
Contaminant : Chloroform (Trichloromethane)			
	}		
Influent Process Effluent Effluent-Air Fate Summary			
Process Summary			
Total Air Emissions	15.8725	%	-
Contribution from Surface Volatilization	0.113234	%	-
Contribution from Diffused Aeration	15.7593	%	-
Biodegradation	45.7605	%	-
* as a percentage of the total contaminant in the system			
Total Air Emissions	47617.5	g/d	-
Contribution from Surface Volatilization	339.702	g/d	-
Contribution from Diffused Aeration	47277.8	g/d	-
Biodegradation	137282.0	g/d	-
		Clo	se

Figure 3-16 Fate summary tab for Activated Sludge-Diffused Air

Note: depending on the process unit, the output window may consist of different tabs. The parameters on the influent tabs are the values for the combined wastewater and sludge influent lines. For the Effluent-Air stream, all emissions from open tanks are provided as a mass rate only; emissions from covered tanks are provided both as concentration and mass rate.

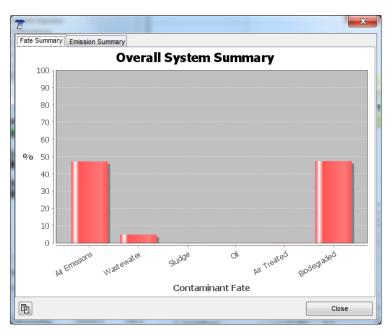
CONTAMINANT FATE TABLE

A contaminant fate table is generated as soon as the layout is solved. The contaminant fate table is available for view at the bottom right of the screen (**Figure 3-17**). The table lists all the unit processes in the layout and provides information regarding the total load of incoming contaminant and its fate in the unit process. Left clicking on a unit process in the layout, highlights the corresponding mass balance row in the table and vice-versa. An additional button for viewing results is also provided besides the unit process ID. Clicking on the button, shows the same screen as available from the **View Results** command associated with each unit process.

Contaminant Fate											
			Source (g/d)			Outgoing (g/d)				Fate (g/d)	
		Influent Air	Influent	Formed	Air	Wastewater	Sludge	Oil	Removed	Biodegraded	
Air Effluent		141703.967	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Primary Clarifier	· · · ·	0.0	214868.542	0.0	7010.73768	201716.262	6141.54144	0.0	0.0	0.0	
Point	· · · ·	0.0	592.570876	0.0	0.0	592.570876	0.0	0.0	0.0	0.0	
Air Effluent(2)	· · · ·	69.0283365	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ξ
AS-Diffused	· · · ·	0.0	230752.235	0.0	47617.5024	45853.1809	0.0	0.0	0.0	137281.552	
Air Treatment	· · · ·	690.283365	0.0	0.0	69.0283365	0.0	0.0	0.0	621.255029	0.0	
Anaerobic Digester		0.0	6734.11232	0.0	690.283365	36.7199561	975.806029	0.0	0.0	5031.30297	
Secondary Clarifier		0.0	45853.1809	0.0	1384.42271	14840.2144	29628.5438	0.0	0.0	0.0	T

Figure 3-17 Contaminant fate table

OVERALL MASS BALANCE TABLE


On the left side of unit process contaminant fate table, an overall mass balance table is provided. The table shows the total incoming contaminant load and its fate in the system. The mass balance table for chloroform is as shown in **Figure 3-18**. It can be seen that, 47.3% of the incoming Chloroform is expected to go in the air stream, while 47.4% is expected to biodegrade.

Overall Mass Balance	e	
Contaminant Load	Mass (g/d)	% of total
Total Incoming	300000.0	100.0
Total Formed	0.0	0.0
To Air	141772.996	47.2576652
To Wastewater	14840.2144	4.94673813
To Sludge	452.679886	0.150893295
To Oil	0.0	0.0
Removed/Treated	621.255029	0.20708501
Biodegraded	142312.855	47.4376183

Figure 3-18 Overall mass balance table for Chloroform

Just above the overall mass balance table, three command buttons are provided for visualizing the outputs in the graphical format, exporting the data to EXCEL and copying the Tables to

clipboard. Click on the **Show Graph** button to visualize the fate summary data in a graphical format. The Fate Summary tab contains a chart (**Figure 3-19**) providing a visual depiction of the various fate mechanisms of the contaminant for the whole layout. On the other hand the Emissions Summary tab contains a chart shows the mass emission rate from each process unit in the facility.

Figure 3-19 Emission Summary chart

VIEW RESULTS FOR COMPLETE LAYOUT

To view the results for the layout in other formats, select the **View Results** in the **Model** menu. Alternatively, click on the **View Results** button available on tool bar. Activation of **View Results** opens a Results window with 4 output options. The output from each option is described below.

- 1. Air Emissions Air emissions are tabulated for each contaminant from each process or vice versa.
- Contaminant Fate Group by contaminant The fate of selected contaminant for all unit processes in the layout is summarized.
- 3. Contaminant Fate Group by unit process The fate of all contaminant at a selected unit process is summarized.
- 4. System States Group by contaminant For a given contaminant, the states are tabulated for each stream in the layout.

The first option of Air Emissions provides the summery of air emissions that can be used for preparing emission reports (**Figure 3-20**). The column and rows in the air emission table can be switched by using the row –column invert button provided on the top right of the table.

Output Optic				1							
Table type:	pe: Air Emissions -										
lesults	Air Emissions										
	Air Effluent Summary										
		aminant Fate - group by contaminant			Air Emissions (g/d)						
Contaminant Fate - group by process			nt	Primary Clari	Air Effluent(2)	Air Treatment	Anaerobic D	AS-Diffused	Belt Filter Pr	Secondary	
cetone	Stream States - group by contaminant			290.745	0.188279	0.188279	1.88279	7.6123	0.00473927	5.63639	
enzene			28.3121		3.94685	0.13156	0.13156	1.3156	1.18626	0.00330853	0.0335579
	(Trichloromethane)		48.2878					5.07991	21.082	0.0127761	0.649166
ethanol			12511.2					1.0976	8.19791	0.00276283	7.27305
otal		16270.7	17163.9		841.507	0.93759	0.93759	9.3759	38.0785	0.0235867	13.5922

Figure 3-20 Output Options Window for different Table Types

Custom reports can be generated by using the Stream States – group by contaminant option. The user can click the Edit Properties button on the top right side of the table to select the Process Streams (effluent, sludge, air) and the state variables of interest associated with the process streams. In the stream and state selection window, all the streams and state variables are selected by default. Click on the **None** button for both the Process Stream choices and State Variable choices. Now, under the Process Stream choices, click to select the following:

Wastewater Influent Air Effluent Secondary Clarifier Air Effluent (2) Sludge Effluent

The individual influent and effluent streams for any unit process can be accessed by clicking on the + mark on the left of the process unit. Click on the + sign next to the Secondary Clarifier process to see all the influent and effluent streams. Depending on the requirement, the stream outputs can be included or excluded by selecting/deselecting the stream. For the Secondary Clarifier, de-select the stream with labels AS_eff, RAS (return activated sludge), Cl_air (air emission from clarifier) and WAS (waste activated sludge). Only Cl_eff remains selected, which is the treatment plant effluent.

Now expand Air Effluent process to see all the incoming streams. As all of the incoming air streams contribute to the total plant air emissions, let all the streams be selected. Note that Cl_air is the secondary clarifier air emission, which was de-selected in the clarifier unit process.

Now the state variables to be included in the report need to be selected. From the checklist, select Flow Rate, Total Suspended Solids, Organic Chemical Mass, Organic Chemical C₁, Organic Chemical C_t and Temperature. The C₁ and C_t represent the liquid phase and total (liquid and solid phase) concentrations of the organic chemical. The selections for the streams and states are shown in **Figure 3-21**. Click on the **Accept** button to see the output screen as shown in **Figure 3-22**.

The data shown in the screen is for Chloroform. To view the data for other compounds, simply click on the contaminant dropdown list above the table and select the compound of interest for the fate summary.

The tabulated data can be exported to EXCEL or clipboard by using the Export Data and Copy Table to Clip Board button provided at the top left side of the table.

7	×
Stream Choices	State Choices
All None	All None
Include:	Include: Plow Rate Total Suspended Solids Suspended Solids Mass Volatile SS Fraction Vastewater DOC Oil/Grease Organic Chemical Mass Organic Chemical - Cl Organic Chemical - Cl Organic Chemical - Cl Metal - Cl Metal - Cl Metal - Cl Metal Mass Precipitated Metal Powdered Activated Carbon Temperature MKp Solubility PH Fraction of Soluble Chemical Fraction of Sorbed Chemical - Organic Solid Fraction of Sorbed Chemical - Oil Fraction of Sorbed Chemical - DOC Fraction of Sorbed Chemical - PAC
	Accept Cancel

Figure 3-21 Selection of Process Streams and State Variables for Report

Table type: Stream States - g	roup by contami	inant 👻							
lesults									
Contaminant: Chloroform (Tric	chloromethane)	•							
	Wastewater eff 0	Equalization air_2	Primary Clari air_3	AS-Diffused air_4	Secondary Cl_air	Belt Filter Pr air_6	Air Treatment air_1	Secondary Cl_eff	Belt Filter Pr sl_3
low Rate (m3/d)		In finite	In finite	In finite	In finite	In finite	3288.0473	29986.621	13.3790106
otal Suspended Solids (mg/L)		-	-	-	-	-	0.0	10.0	400000.0
		85690.4166	7010.73768	47617.5024	1384.42271	0.887929588	69.0283365	14840.2144	452.679886
rganic Chemical - CI (ug/L)	9652.50965	-	-	-	-	-	20.9937176	494.182896	721.313196
emperature (deg C)	40.0	-	-	-	-	-	0.0	39.8768174	35.0

Figure 3-22 Output Report for the Selected Streams and State Variables

3.9 GENERATE REPORT

In addition to the above features for viewing and exporting data, TOXCHEM allows user to generate an elaborate report containing information for all the process units and flow streams. To generate a report, select **Generate Report** from the **Model** menu. In the Report Setup window (Figure 3-23), keep the default settings in the Options and File Format items. Press **Accept** to start the process of report generation. If required, change the name of the file and/or directory where the file should be saved. If *view report on completion* selection box was checked in the Report Setup window then the report will be displayed in the Excel file format which was selected on the Report Setup window.

	T Report Setup	J
	Options	
	Layout Image	
	Stream States - group by contaminant	
	Voverall Mass Balance	
	Contaminant Fate - group by contaminant	
	Contaminant Fate - group by process	
•	✓ Air Emissions	
	V Process	
1	Image	
	Input Parameters	
	V Output Data	
	Contaminant Database Parameters	
	⊢ File Format	
	'Excel' file (.xls)	
	'Rich Text Format' file (.rtf)	
	view report upon completion	
	Accept Cancel	

Figure 3-23 Report Setup Window

3.10 ADDING PARAMETERS ON THE QUICK ADJUST TOOLBAR

Display the quick adjust panel by clicking on the left pointed arrow on the divider between the drawing board and the quick adjust toolbar. In this exercise we will place the following parameters (**Table 3-5**) for different unit processes on the quick adjust panel.

Object	Parameter
Influent	Flow Rate
Influent	Suspended Solids concentration
AS- Diffused Air	Air Flow Rate
AS- Diffused Air	MLSS concentration
Secondary Clarifier	Sludge SS concentration

Table 3-5 Parameters to be Placed on Quick Adjust Toolbar

To place a parameter on the quick adjust toolbar, open the Data Entry form by right clicking on the object and selecting Edit Parameters. Right click on the parameter that needs to be placed on the quick adjust toolbar and click on the "Pin to Quick Adjust Toolbar" (**Figure 3-24**). Repeat the steps for each parameter to be placed on the quick adjust toolbar.

T Wastewater Influent		×
Data Entry Contaminants Flow Split		
Flow Pate Suspe Pin to Quick Adjust Toolbar VSS to SS Ratio	30000.0 m3/d 250.0 mg/L 75.0 %	• D • D • D
Wastewater DOC	0.0 mg/L	- 🗋
Oil/Grease Concentration	0.0 mg/L	• 🗋
Temperature	40.0 deg C	• 🗋
	Accept	Cancel

Figure 3-24 Data Entry Form for Selecting Parameters for Quick Adjust

After completion of the above procedure the Quick Adjust Toolbar on the right hand side look like **Figure 3-25**.

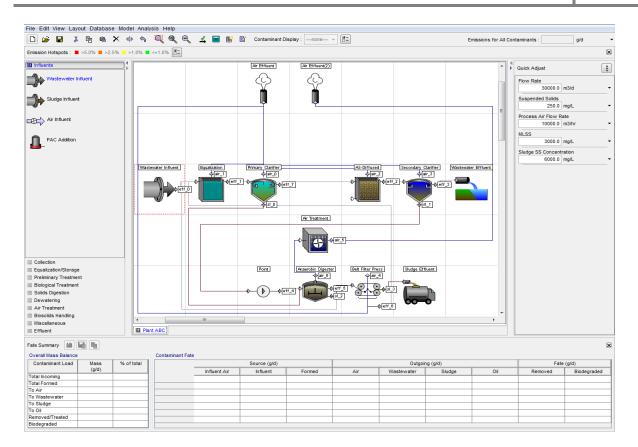


Figure 3-25 Quick Adjust Panel with Selected Parameters

To differentiate between various parameters, it is a good idea to label these using the "Add a Label" command from the Options button available at the top –right of the quick adjust panel. Select the parameter above which a label needs to be placed e.g. Flow Rate and click on the Options button and Select "Add a Label". In the New Label, add Influent ABC and press OK. The label Influent ABC will appear above the Flow Rate Parameter. Similarly add AS-Diffused and Secondary Clarifier Labels to distinguish the parameters belonging to different unit processes. After adding the labels, the completed model shall appear as shown in **Figure 3-26**. If while adding the label, the label appears at wrong place, it is possible to click and move it around. To remove a label, right click on the label and select Remove Label.

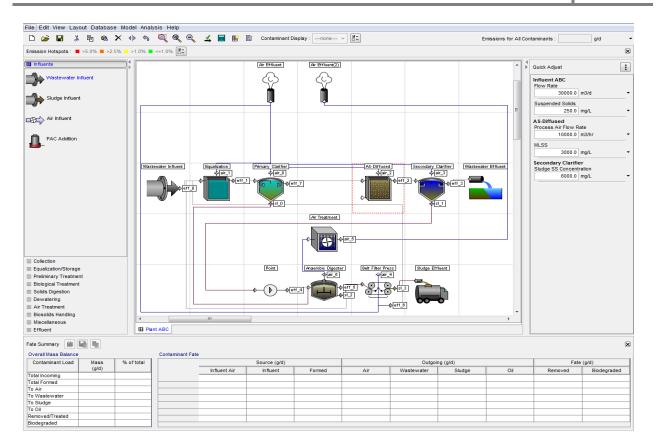


Figure 3-26 Quick Adjust Toolbar with Labels

New in V4.3 is the ability to vary the values of compound physical and chemical properties of <u>user-defined chemicals</u>. For example, the impact of varying a first order biodegradation rate coefficient can be tested by pinning the parameter to the toolbar. First create a user-defined compound representing triclosan, an anti-bacterial agent. Find and select the user-defined compound in the database. Click on the "biodegradation" tab, then right click on the aerobic biodegradation rate (Kb) at 20 °C for liquid processes. Click on the "Pin to Quick Adjust Toolbar" box to send the rate coefficient to the toolbar. Once it appears on the Quick Adjust toolbar, create a label for the property indicating it is the biodegradation rate coefficient for the user-defined compound triclosan. The Quick Adjust toolbar now looks like the figure below.

* Toxchem*						Then, in star	the second second	and the second	and the second				
le Edit View Layo	ut Databas	e Model	Analysi										
🗅 🧀 🥁 📓 🙏 🧤 🔍 🔸 🦓 🥰 🕰 🚅 🖬 🔛 Contaminant Display : E							Contaminants :	g/d					
mission Hotspots : 🔳	>5.0% 📕 >3.	0% = >1	.0% 🔳 <=	1.0%									
Influents Collection Equilation/Storage Equilation/Storage Prelimary Treatment Diological Treatment Anaerobic Anaer	e - e - on e -		(Was	eester influent	Equalization	~	Effiner ary Claffler	AS Diffured AS DI	Escondary Clan			Ouick Adjust Influent ABC Flow Rate Suspended Solids Suspended Solids MLSS Secondary Charl Sludge SS Concer Triclosan user Aerobic Biodagra (11	250.0 mg/L Rate 10000.0 m3/hr 3000.0 mg/L fier
te Summary 🕍 📗				Contaminant Fate									
Contaminant Load	Mass	% of t				Source (g/d)			Outgoin	ig (g/d)		Fate	e (g/d)
	(g/d)				Influent Air	Influent	Formed	Air	Wastewater	Sludge	Oil	Removed	Biodegraded
tal Incoming													
tal Formed													
Air			[
Wastewater													
Sludge Oil			[
emoved/Treated													
								1					1

Figure 3-27 Quick Adjust Panel with Selected Parameters

Once the important parameters are placed on the Quick Adjust Toolbar, it is possible to easily change the parameters values for different simulations. In this exercise change, the Influent flow rate from $30,000 \text{ m}^3/\text{d}$ to $50,000 \text{ m}^3/\text{d}$ and run the model to see the changes in the air emission. Change the value back to $30,000 \text{ m}^3/\text{d}$ before continuing with the following exercise.

3.11 ADDING USER-DEFINED COMPOUNDS

Although the compound database in TOXCHEM is extensive (~800), the compound of user interest may not be available in the database. Compounds can be added to the TOXCHEM database and used in modeling. Adding new compound is often useful if user wants to compare the fate of compound with different values of a chemical property (or more than one property). Compounds with user defined properties can be saved as compoundname-1, compoundname-2, and so on, in the database. The user defined compounds then can be included in the influent wastewater as compounds for evaluation. Afterwards, any compound which is no longer of interest can be deleted from the database.

ADDING A NEW COMPOUND

Note: The chemical property set associated with each organic compound has an updated look since V4. A set of tabs are used to group similar properties. A few additional properties such as weak acid/base dissociation coefficients are added in the database.

In the present example, we are going to add a new compound called "test1" in the organic chemical database. From the tutorial plant configuration established above select the **Organic**

T Organic Chemical Database						×
Organic Chemical List	Selected Org	ganic Chem	ical Details	,		
Filter : All 👻	1,2-Dimeth	ylnaphthale	ne			
Search by name :	Properties	Stripping	Sorption	Biodegradation	Dissociation	References
Search by CAS # :	Name				1,2-Dimethyl	naphthalene
1,2-Dimethylnaphthalene	CAS #	ŧ			573-98-8	
1,3-Dinitropyrene 1,6-Dimethylnaphthalene	Molec	ular Weight	156.23	g/mol		
1,6-Dinitropyrene	Densi	ty	1.0021	g/cm3		
17a-ethinylestradiol (EE2)	Vapor	Pressure	0.012	mmHg @25oC		
17b-estradiol (E2) 2,2',4,4',5,5'-Hexabromodiphenyl Ether (BDE153)		g Point			266.0	deg C
2,2',4,4',5-Pentabromodiphenyl Ether (BDE99)						
2,2',4,4'-Tetrabromodiphenyl Ether (BDE47)						
2,4 D						
2.4.4'-Tribromodiphenyl Ether (BDE28)						
]
				Accep		Cancel

Figure 3-28 Organic Chemicals Property Set

To add a new contaminant in the list, click on the Create New Contaminant (+ sign) button available at the bottom right of the contaminant list window. Clicking on the + button create a copy of the compound which was selected initially. As soon as new compound is created, all the property fields become editable. To change the name of the compound click on the Name field and change the name to *test1*. This will change the name of the compound and shift its location in the list according to the alphabetical order. Change the properties of the *test1* according to the values provided in **Table 3-6**. After entering all the information, set the contaminant Filter to User-Defined to see the *test1* in the contaminant list (**Figure 3-29**). Once the user compound is added, press enter to close the window. Do not forget to press **Accept** to save the compound in the database. It is better to create a copy of the contaminant which has similar property to the new compound. To search a compound of interest, use the Search by Name or Search by CAS# search options.

Parameter	Value	Tab
CAS No.	108-21-4	Properties
Molecular Weight	102.13	Properties
Density	0.87	Properties
Vapor Pressure	Unchecked	Properties
Boiling Point	Unchecked	Properties
Henry's Law Coefficient at 25°C	0.01517	Stripping
Van't Hoff A for estimating H	Unchecked	Stripping
Van't Hoff B for estimating H	Unchecked	Stripping
Log Octanol/Water Partition (Kow)	1.36	Sorption
Sorption Suspended Growth, Kp	0.085	Sorption
Sorption Fixed Growth, K _p	Unchecked	Sorption
Sorption- Wastewater DOC (K _{doc})	Unchecked	Sorption
Isotherm for Carbon (K _c)	Unchecked	Sorption
Isotherm for Carbon (1/n)	Unchecked	Sorption
Sludge Process - Anaerobic Biodegradation Rate	Unchecked	Biodegradation
Sludge Process – Aerobic Biodegradation Rate	0.0037	Biodegradation
Liquid Process - Aerobic Biodegradation Rate K _b	0.0037	Biodegradation
Liquid Process - Aerobic K _s	Unchecked	Biodegradation
Liquid Process – Anoxic Reduction Factor	0.8	Biodegradation
Liquid Process – Anaerobic Reduction Factor	0.1	Biodegradation
Classification	Acid	Dissociation
First Acid Dissociation Coefficient	6.8	Dissociation
Second Acid Dissociation Coefficient	Unchecked	Dissociation

Table 3-6 Property values for input to User Compound "Test1"

Note: To add multiple compounds, press + after one compound is entered and repeat the steps described above. There is no need to press **Accept** after entering each compound. However, once all the compounds are entered, it is necessary to press **Accept** to confirm the changes. A user defined contaminant can be deleted by selecting the compound from the contaminant list and pressing Delete Contaminant (- sign) button next to Create New Contaminant (+ sign) button. To incorporate the new contaminant in the layout calculation, follow the same procedure as described in data entry for influent object.

Any user-defined compound will be added alphabetically to the database list and its name appears in blue color. Compounds with numbers (e.g. 1,4 dichlorobenzene) appear before alphabetical characters that start compounds. A user-defined compound is identified by a blue font compared to the black font of the pre-defined compounds. To quickly view the list of user-defined compounds, use the "Filter" dropdown selection and click on **User-defined**. It may be a good idea to create new contaminants with a specific prefix (e.g. User_ etc.) for easy identification.

T Organic Chemical Database						×
Organic Chemical List	Selected Org	ganic Chem	ical Details			
Filter : User-defined	test1					
Search by name : Find	Properties	Stripping	Sorption	Biodegradation	Dissociation	References
Search by CAS # :	Name				test1	
test1	CAS #	ŧ			108-21-4	
	Molec	ular Weight			102.13	g/mol
	Densit	ty			0.87	g/cm3
	Vapor	Pressure			01.0102	mmHg @25oC
	📄 Boiling	g Point				deg C
				Accept		Cancel

Figure 3-29 User Defined Contaminant

3.12 SENSITIVITY ANALYSIS

The sensitivity analysis feature is a useful tool in TOXCHEM. It allows the user to see the effect of various design and operating conditions on the fate of the contaminants in the wastewater treatment plant. In essence, the sensitivity analysis adjusts the magnitude of the parameter of interest while holding all other test conditions constant. This enables the user to assess which factors are the most important in governing air emission rates or effluent concentrations.

To illustrate the use of the sensitivity analysis, the effect of a change in the aeration rate in the diffused activated sludge process on the fate of chloroform will be evaluated.

SETTING THE SENSITIVITY ANALYSIS

Once a treatment plant layout is properly configured, it is possible to run the sensitivity analysis. To setup a sensitivity analysis, select **Sensitivity Analysis** from the **Analysis** menu. On the Sensitivity Setup window (**Figure 3-30**) set the Chloroform, AS-diffused and Air flow rate in the Contaminant, Process and Parameter selection fields respectively. Leave the View effect field at its default value.

TOXCHEM V4.3

T Sensitivity Analysi:	s												۰.					x
Parameter Selection-									Range	Settings								
Contaminant :	Acetone							•	Curren	t value :	1	1000.0	ug/L		O Lin	iear Dist	ribution	
Location :	Wastewat	ter Influen	nt					•	Low va	alue :		500.0	ug/L		⊚ Lo	garithmic	c Distribu	ition
Parameter (X) :	Acetone							•	High va	alue :	2	2500.0	ug/L					
View effect at (Y) :	Overall Sy	stem						•	Numbe	r of step	s:	9						
							Due Ae	-										
Blank Graph							Run An	alysis										
100																		
90 -																		
80 -																		
70 -																		
60 -																		
50 -																		
40 -																		
30 -																		
20 -																		
10																		
0 5	10	15	20	25 3	0 35	40	45	50	55	60	65	70	75	80	85	90	95	100
																	Close	

Figure 3-30 Sensitivity Analysis window

SETTING THE SENSITIVITY RANGE

The range over which the sensitivity analysis is to be assessed must be specified. To do this, first note the current value specified in the process unit is10,000 m³/h. Suppose that the analysis is to examine the effect on chloroform fate over a range of 5,000 to 50,000 m³/h of air flow rate. Set the low value for the range at 5000 m³/h and the high value for the range at 50,000m³/h. Set the number of steps at 10 to obtain a sufficient number of points for assessment.

RUNNING THE SENSITIVITY ANALYSIS

Click the **Run Analysis** button to initiate the sensitivity analysis. When it is finished, the results of the analysis are reported under different tabs of Percentage-graph, Mass Loading-graph, Percentage - table and Mass Loading- table. By default, the sensitivity analysis results are shown on the Percentage-graph tab (**Figure 3-31**). The graph on Percentage-graph tab indicates that the increase in aeration rate increases the fraction of chloroform that is stripped/volatilized, while decreasing the fraction biodegraded. On the left side of the graph, the

yellow color Up and Down arrows may be used to change the scale of the graph. Use the yellow color rectangle to reset the scale. The graph legend may be turned On/Off by using the Graph Legend button below the yellow arrow pointing down. To copy the graph to the clip board, use the Copy Image to Clipboard button available below the Graph Legend button. Try clicking on other tabs of Mass Loading-graph, Percentage-table and Mass Loading- table to familiarize with the sensitivity analysis outputs.

In some cases, the range of the sensitivity analysis variable may span over several orders of magnitude. In such situation, it may be better to plot the data on a logarithmic scale rather than on a linear scale. In the Range Settings header box, user can easily switch between the options of Linear Distribution/Logarithmic Distribution. Note that the data curves in the charts remain essentially unchanged after the selection is changed from Logarithmic to Linear Distribution, however, on the X-axis there are more data points at lower air flow rates than that in the linear distribution.

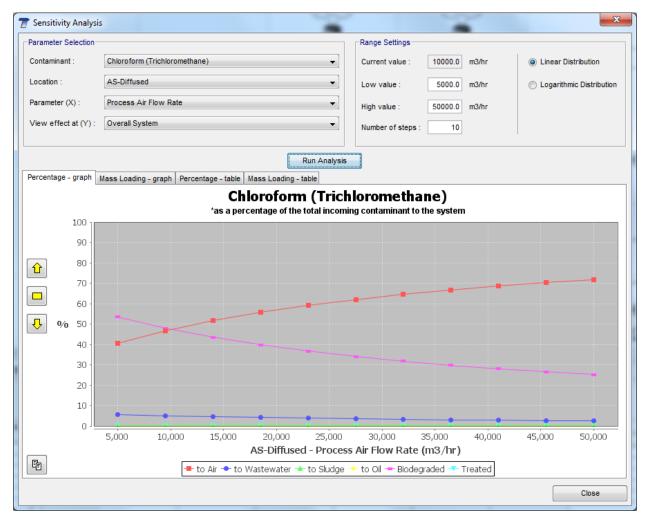


Figure 3-31 Sensitivity Analysis Output Chart

3.13 USE OF BACK-SOLVER FEATURE

The back-solver feature of TOXCHEM enables user to determine, for example, the required concentration of a contaminant in influent to meet certain specified emission criteria in a downstream process unit for a selected contaminant. There are a number of possible ways that back-solving may be applied. For example, to stay within total emission limits, the air loading from an activated sludge tank is not to exceed a certain mass rate. The back-solver can work from the specified maximum air loading of the contaminant to arrive at the maximum concentration arriving at the treatment plant. As another example, one may wish to check the concentration in an air stream to ensure that the compound does not exceed the lower explosive limit (LEL). By back-solving from the gas concentration in an enclosed headspace to the influent concentration, it is possible to determine the maximum allowable concentration may relate to the quality of residual solids disposed of off-site. Suppose the concentration of a contaminant is not to exceed a certain value in the residual sludge disposed of off-site. We can determine what the maximum concentration in the influent will be to avoid reaching the ceiling value.

The TOXCHEM back-solver can be setup with respect to following output variables:

Soluble aqueous concentration

Total aqueous concentration

Gas concentration

Mass air emission rate

Solid sludge concentration

Total sludge concentration

Total sludge dry weight.

Configuring the Back-Solver Window

Note: The layout of the back-solver window has been substantially altered from previous versions to provide a simpler interface for set-up.

The back-solver set up window can be accessed by selecting **Back-Solver** from the **Analysis** menu. In the back-solver setup window, the setup options are organized under two tabs i.e. "Target Solution" and "Influent Manipulation". For this example, three scenarios as listed in **Table 3-7** will be tested. On the Target Solution tab, enter the values from **Table 3-7**. Move through the Table one contaminant at a time. Click on the "+" button to add the next scenario after all the inputs for the first contaminant are complete. Repeat the process for the third contaminant. When the three scenarios have been entered, the dialog box should appear as in **Figure 3-32**.

Scenario Name	Contaminant	Solution Type	Process Location	Solve to Value
Methanol Ct SC	Methanol	Total aqueous concentration	Secondary Clarifier	0.02 mg/L
Benzene MAER AS	Benzene	Mass Air Emission Rate	AS-diffused	1.0 g/d
Chloroform TSDW BF	Chloroform	Total Sludge Dry Wt.	Belt Filter Press	0.5 mg/kg TS

Notes: leave the solution accuracy at 0.01%.

On the Influent Manipulation tab, leave the influent maximum concentration and influent manipulation to its default value for all the scenarios.

T Back Solver		×
Current List	Selected Scenario Deta	ails
Methanol Ct SC	Scenario name : Meth	anol Ct SC
Benzene MAER AS Chloroform TSDW BF	Target Solution Influe	ent Manipulation
	Contaminant :	Methanol 👻
	Target Variable :	Total aqueous concentration (Ct) 👻
	Process :	Secondary Clarifier 👻
	To value :	0.02 mg/L -
	Solution accuracy :	0.01 %
+ -		
Run All Scenarios	Run Selected So	cenario
Results		
:		Accept Cancel

Figure 3-32 Completed Back-Solver Scenarios

RUNNING SCENARIOS

The configured scenarios can be solved by pressing **Run All Scenario** button or **Run Selected Scenario** button. For example, click on the chloroform scenario and then click on the **Run Selected Scenario** button. The back-solver iterates to the solution and outputs the results of simulation in the Results tab. In this exercise, press the **Run All Scenario** button to run all the scenario one after other. The **Back-Solver** results are presented in individual scenario named tabs. The typical output from back-solver scenario analysis is as shown in **Figure 3-33**.

T Back Solver	
Current List	Selected Scenario Details
Methanol Ct SC Benzene MAER AS	Scenario name : Chloroform TSDW BF
Chloroform TSDW BF	Target Solution Influent Manipulation
	Contaminant : Chloroform (Trichloromethane) -
	Target Variable : Total sludge dry weight 👻
	Process : Belt Filter Press -
	To value : 0.5 mg/kg 👻
	Solution accuracy : 0.01 %
+-	
Run All Scenario	Run Selected Scenario
Methanol Ct SC Benzene MAER AS Chloroform T	SDW BF
Scenario : Chloroform TSDW BF	
Solution for contaminant : Chloroform (Trichlorome Wastewater Influent 58.6843528 ug/L	thane)
	Accept Cancel

Figure 3-33 Results for Back-Solving of Chloroform Scenario

The back solver estimated influent concentration can be directly transferred to the influent wastewater data input by clicking on the button to the right of the solution (a right-pointing arrow and # sign). A pop up confirmation message appear. Click on the transfer button to transfer the estimated value for all the three contaminants from respective tab. Close the Back Solver

window and go to influent unit process and check that the estimated concentration values are correctly updated. Run the simulation again with the new values and verify that the outputs at the respective unit process are as expected with the new influent concentrations.

The options button at the bottom left of the window presents other options of exporting/ importing back solver scenario settings to/from EXCEL file. Also the option of transferring back solver estimated values for different scenarios to the influent object is available for easy transfer of estimated values.

Consider now the ability added in V4.3 to solve for the required influent flow rate that would result In a sludge flow rate of 480 m³/d from the primary clarifier. After accessing the back-solver, for the Target Solution, click on the Stream State button, and select "Flow Rate" from the list of state variables, Primary Clarifier as the Process and Effluent-Sludge as the stream type. Setr the target flow of primary sludge to 480 m³/d. Call the scenario name "Sludge flow at Prim Clar". The scenario result provides an influent wastewater flow rate as indicate in the **Figure 3-34** below.

T Back Solver			x
Current List	Selected Scenario D	Details	
Methanol CI at EQ	Scenario name : S	ludge flow at Prim Clar	
Benzene MAER AS			
Chloroform TSDW BF Sludge flow at Prim Clar	Target Solution In	fluent Manipulation	_
Slouge how at Frim clar	Contaminant	Methanol	-
	Target Va	ariable Soluble aqueous concentration (CI)	-
	Process	Equalization	-
	Stream State	Flow Rate	•]
	Process	Primary Clarifier	•]
	Stream	Effluent-Sludge	•]
			_
	To value	480.0 m3/d	-
	Solution accu		
+-			
Run All Scenario	Run Selecte	ed Scenario	
Sludge flow at Prim Clar			
Scenario : Sludge flow at Prim Clar			
Wastewater Influent 83015.3 m3/d		⇒ [±]	
		Accept Cancel	

Figure 3-34 Back-solver results for flow rate

4.ADDITIONAL TOPICS

In this chapter a few additional topics are discussed to help the user understand TOXCHEM V4.3 functionalities.

4.1 IMPORTING V3 LAYOUTS

LAYOUTS WITH COMPOUNDS IN STANDARD DATABASE

For importing the layouts in which only the contaminants from the standard V3 database are modeled, use the **File** – **Open** command to open the V3 layouts with .wtp extension. If the layout contains unit process of DAF, newly defined oil connection will have to be connected to an oil effluent before the layout could be simulated.

LAYOUTS WITH USER DEFINED COMPOUNDS

If the layout contains a user defined contaminant in it, then it is first necessary to import the user defined compound database in the V4 database before importing the layout. The V3 user defined contaminant database file shall be available in the TOXCHEM V3 install directory. The user chemical and metal database files are named USCHEM3.DB and USMETAL3.DB respectively. To import these V3 user database files in V4 and later, following step may be used for importing organic chemical compound data.

- 1) Select View Organic Chemical Database from the Databases menu item
- 2) Click on the **Import Database from File** command button available on the bottom left of the organic compound display panel.
- 3) Select the database file

If the name of the user defined contaminant does not conflict with the compound name already existing in the database, the compounds will be imported into the database. Set the filter to User-Compounds to see the list of imported compounds. If a conflict is found then a pop-up window will show up (**Figure 4-2**), presenting several choices for overwriting, skipping or appending a descriptor to the name of the conflicting compounds.

Name C	onflict
?	A contaminant with the name "Acetone test" already exists. overwrite skip
	O append to name : -copy
	perform the same action for all conflicts
	OK Cancel

Figure 4-1Choices when importing user compound which pre-exist in database

Same steps can be followed for importing the metal compounds, except that in step #1, select **View Metals Database** instead of **View Organic Chemical Database** from the **Database** menu.

After importing the user defined database, import the layout by following the steps listed in previous section.

Caution: Due to the differences in the grid structure of V3 and V4 (or later versions), it is sometimes possible that all of the unit processes defined in V3 are not imported in V4. In such situation, user may have to modify V3 layout to make it compatible for V4 import. If you encounter this issue, please contact Hydromantis for more details regarding how to modify your V3 layout.

4.2 HOW TO CREATE USER DEFINED GROUP OF CONTAMINANTS

The user can create a user defined group of contaminants, which are regularly used in analysis. By using a user defined group of contaminant, the user can avoid the step of individually selecting the contaminant each time. Following steps may be used to create a user defined group of contaminants.

- 1) Select Edit 'Quick Select' Groups from the Database menu item
- In the Quick Select Contaminant Groups window as shown in Figure 4-2, click on the + button next to select group and enter the name of the group in the pop up window.
- 3) Find the contaminant name from the organic chemicals or metals and press the transfer arrow to transfer the contaminant to the Current chemicals window.
- 4) For example, if you enter "Test" as the group name containing Benzene, Ammonia and Dichlorobenzene 1,2, the Quick Select Contaminant Groups window should look as shown in **Figure 4-3** after the first three steps.
- 5) Press **Accept** to create the group.
- 6) You can easily add the group of contaminants in an influent object by pressing on the **Quick Select** button (**Figure 4-4**) and selecting the contaminant group of choice.

Select group :None	- +	
Group Properties		
Choices	Current	
Organic Chemicals		
1,2-Dimethylnaphthalene		
1,3-Dinitropyrene		
1,6-Dimethylnaphthalene		
1,6-Dinitropyrene		
17a-ethinylestradiol (EE2)		
17b-estradiol (E2)		
< >		
Metals		
Aluminum		
Cadium		
Chromium		
Copper		
Lead Nickel		
Zinc		
ZINC		

Figure 4-2 Quick Select Contaminant Groups window for creating/editing contaminant groups

🜃 Quick Select Contaminant Grou	ips		×
Select group : Test	•		
Group Properties			
Choices		Current	
Organic Chemicals		Benzene	
Dichlorobenzene,1,2-		Ammonia	
Dichlorobenzene,1,3-		Dichlorobenzene,1,2-	
Dichlorobenzene,1,4-			
Dichlorobenzidine,3,3'-			
Dichlorobenzonitrile,2,6- Dichlorobenzophenone P,P			
Dichlorobenzophenone P,P			
Metals			
Aluminum			
Cadium			
Chromium			
Copper			
Lead			
Nickel			
Zinc			
	j l	1	
		Assessed Connect	
		Accept Cancel	

Figure 4-3 Window showing the user defined contaminant group "Test"

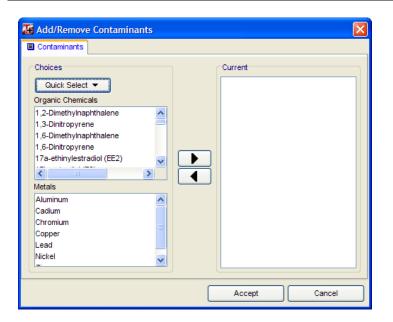


Figure 4-4 Using Quick Select to add the contaminant group to an influent object

4.3 HOW TO SET SRT BASED WASTAGE IN SECONDARY CLARIFIER

TOXCHEM V4 (and later) allows users to automatically estimate the Waste Activated Sludge (WAS) flow rates based on the Sludge Retention Time (SRT) specified in the biological tanks. This SRT based WAS flow waste algorithm is in addition to the method of specifying the sludge flow rate split fractions. The SRT based WAS flow rate estimation method is available only when there are two streams originating from the underflow of the secondary clarifier. To setup the SRT based WAS flow rate estimation, following steps may be used.

- After the process layout is completed with all the stream connections, right click on the secondary clarifier object and select Edit Parameters item. Access the Flow Split tab. The Secondary Clarifier with the Flow split tab shall appear as shown in Figure 4-5.
- 2) In the **Flow Split** tab select the Calculate split fractions. This shall change the Flow Split window to as shown in **Figure 4-6**.
- 3) SRT based WAS flow rate estimation require a) specification of the biological tanks, the biological mass of which will be used in WAS flow rate estimation and b) the correct specification of the WAS flow line.
- 4) The biological tanks which are included in the wastage flow calculation can be selected from the list of tanks that appears by clicking on Edit button (Figure 4-7). Select the tanks whose sludge mass needs to be considered in the SRT based WAS estimation. In this example, select the AS-diffused tank.
- 5) Next we need to specify the WAS stream correctly. If the indicated WAS stream is not correct, the WAS and Recycle flow lines can be switched. In this example, the SI_0 shall

54

be Recycle while SI_1 shall be the WAS line. Pressing on the 2 should change the order.

- 6) After the setup, the final window shall look like Figure 4-8.
- 7) Press Accept to commit the changes.

\overline Secondary Clarifier	X
Data Entry Advanced E Flow Split	
Wastewater Flow Split: Cl_eff (to Wastewater Effluent) Air Flow Split: Cl_air (to Air Effluent) Sludge Flow Split:	1.0
 Specify split fractions RAS (to AS-Diffused) WAS (to Point) 	0.98
 Calculate split fractions based on SRT 	
	Accept Cancel

Figure 4-5 Flow Split tab of secondary clarifier process unit

Secondary Clarifier	
Data Entry Advanced E Flow S	Split
Wastewater Flow Split: CI_eff (to Wastewater Effl Air Flow Split: CI_air (to Air Effluent) Sludge Flow Split: Specify split fractions	1.0
 Calculate split fractions bas 	sed on SRT
Reactors for solid mass:	Select
Identify streams:	WAS: RAS (to AS-Diffused) Recycle: WAS (to Point)
	Accept Cancel

Figure 4-6 The Flow Split tab after selecting the Calculate Split fraction method

🖬 🛛 🔀
Select the unit processes to estimate the solid mass used in SRT calculation :
AS-Diffused
Accept Cancel

Figure 4-7 List of tanks that can be used in WAS split calculation (layout specific)

Secondary Clarifier			×
Data Entry Advanced E Flow S	Split		
Wastewater Flow Split: CI_eff (to Wastewater Eff Air Flow Split: CI_air (to Air Effluent) Sludge Flow Split: Specify split fractions		1.0	
Reactors for solid mass:	AS-Diffused	Select	
ldentify streams:	WAS : Recycle :	WAS (to Point) RAS (to AS-Diffused)	
		Accept Cancel	

Figure 4-8 Flow Split Tab after correct specification for SRT based WAS flow rate estimation

4.4 HOW TO CREATE MULTIPLE LAYOUTS IN SAME FILE

TOXCHEM V4 (and later) allows user to work with different process layouts in one file. This is useful to the user, if it is required to compare two or more different process layouts with few changes. The new layouts can be added in the file by using the following steps.

- 1) From the **Layout** menu choose **Insert** to add a blank layout to the file. To create a duplicate of a layout, use the **Duplicate** item inside **Layout** Menu.
- 2) The layout name can be changed by accessing the **Rename** item from the **Layout** menu.

In **Figure 4-9**, the Layout1(2) is created by using the Duplicate command on Layout1. The commands associated with Layout menu may also be accessed by right clicking on the Layout Name shown at the bottom left of the drawing area.

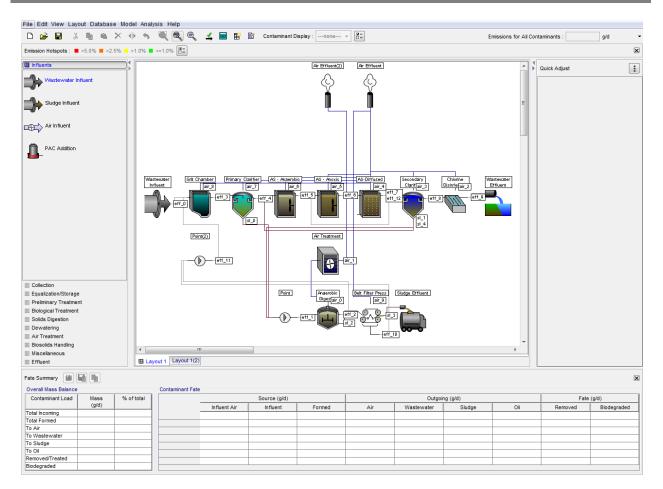


Figure 4-9 Screen showing multiple layouts in same file

4.5 HOW TO CHANGE THE PH GLOBALLY AND LOCALLY

TOXCHEM V4 and later allows the user to model the volatilization of compounds considering pH dependent dissociation. The pH value in each unit process of the layout can be either changed globally or locally. For example if the pH value in all the unit processes is same then it is easier to change the global pH value. By default the global pH value is set to 7.0. To change the global pH value, following steps may be used.

- 1) In Layout menu, click on the Site Properties.
- 2) Set the value in the Site Wide pH

It shall be noted here, that the set values are specific to the layout which is active at the time of setting.

The pH for an individual unit process may be changed in the Data Entry window of the process unit (right click on object and select **Edit Parameters** to open the Data Entry window). Click on the selection box next to **Local pH Value** to activate the data entry field. Enter the local pH (**Figure 4-10**) and press **Accept** to confirm the change.

🚂 MBBR			×
Data Entry Media Advanced Flow Split			
Liquid Depth	þ.0	m	-
Surface Area	2000.0	m2	-
Number of CSTRs	1		
MLSS	500.0	mg/L	-
VSS to SS Ratio	75.0	%	-
Dissolved Oxygen	2.0	mg/L	-
Process Air Flow Rate	10000.0	m3/hr	-
Oxygen Transfer Efficiency	10.0	%	-
Mole Fraction of Oxygen in Gas Source	0.209	O2/Air	
Covered			
Ventilation Rate		m3/hr	
·		monn	
Local pH value	6.0		
Accept		Cancel	
Accept		Carleer	

Figure 4-10 Changing local pH value

4.6 HOW TO ZOOM IN-ZOOM OUT

The user can use the **View** \rightarrow **Zoom** command to Zoom In – Zoom out the layout. Three Zoom buttons are also provided on the tool bar. The **Zoom Selected Area** button on the tool bar may be used to zoom in the selected grid. The **Zoom Plant** button may be used to zoom to the region occupied by the layout. An additional **Zoom Out** command button is also provided on the tool bar. This button may be used to increase the number of rows and columns in the drawing board view.

4.7 HOW TO TURN ON/OFF THE PROCESS TABLE, FATE SUMMARY AND HOT SPOTS TOOL BARS

The default user interface of TOXCHEM V4 shows the panels for Process Table, Fate Summary Tables and Hot Spots Setup (**Figure 4-11**). The panel views can be turned ON/OFF by using the **View** \rightarrow **Toolbars** command. Select or unselect the **Unit Process**, **Hotspot** or **Fate Summary** to open or close these panels. **Figure 4-12** shows the interface when all the panels are closed.

File Edit View Layo	out Databas	se Model	Analy	sis Help									
🗅 🧀 🖬 🐇	B 6.	$\times \Rightarrow$	- 45	🔍 🔍 🔍 🗹	💼 🖺 🖻 o	Contaminant Display :	Acetone	•]	x -	En	nissions for All Conti	aminants :	17164.9 g/d
Emission Hotspots : 📕	>5.0% = >2	2.5% = >1	.0% 🔳	<=1.0%									
Influents													
Wastewater Inf	fluent												
Sludge Influent													
Air Influent													E
PAC Addition													
			=				F	P				P i	
								_ ≁[
Collection										- * *		1	
 Equalization/Storage Preliminary Treatment 						l				— — >		-	
 Biological Treatment 													
Solids Digestion													
Dewatering													
Air Treatment													
Biosolids Handling						_							*
Miscellaneous			•										P
Effluent			🖽 Plar	ntABC									
Fate Summary	6 F												
Overall Mass Balance				Contaminant Fate									
Contaminant Load	Mass	% of t	total			Source (g/d)	,			oing (g/d)			ate (g/d)
Total Incoming 3	(g/d) 30000.0	100.0			Influent Air	Influent	Formed	Air	Wastewater	Sludge	Oil	Removed	Biodegraded
	30000.0	0.0	_	Wastewater Influent	0.0	0.0	0.0	0.0	30000.0	0.0		0.0	0.0
	4576.33	15.2544	_	Equalization	0.0	30347.7	0.0	4272.14	26075.5	0.0		0.0	0.0
	200.831	0.669436		Air Effluent	4576.14	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	10.996	0.036653		Primary Clarifier	0.0	26075.5	0.0	290.745	25633.1	151.73		0.0	0.0
			94	Point	0.0	208.838	0.0	0.0	208.838	0.0		0.0	0.0
	0.0	0.0		Air Effluent(2)	0.188279	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	1.69451	0.005648		Air Treatment	1.88279	0.0	0.0	0.188279	0.0	0.0	0.0	1.69451	0.0
	25210.1	84.0338		Anaerobic Digester	0.0	360.568	0.0	1.88279	0.596384	358.089	0.0	0.0	0.0

Figure 4-11 Default interface view with Process Table, Fate Summary and Hot Spot panel views turned ON

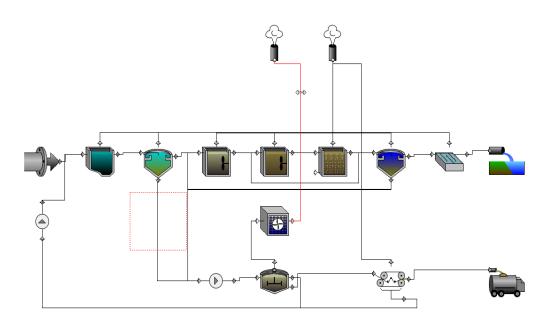

	0	-	1	פי י		~	-0		ш	•••	Contaminant	t Display	Acetone	•	2 -	E	missions for A	ul Contamina	nts . 17	164.9 g/d
ion Hotspots	s: 📕 >5.09	6 📕 >2.5	5% <mark>-</mark> >	1.0% 🗖	<=1.0%	6 🔠]													

Figure 4-12 Interface view with all the panel views turned OFF

4.8 HOW TO REARRANGE THE FLOW LINES

The flow lines can be rearranged for better representation and better tracing of the connection points. Rearranging the flow lines can improve the appearance of the plant layouts. In addition to moving the flow lines in horizontal and vertical directions, it is possible to add break points to create additional line segments. Following step demonstrate the procedure.

 Place the cursor on the line which you want to move. The mouse cursor will change into an arrow and the selected connection line will automatically turn into red color (Figure 4-13). Press the Left mouse button and move the line in indicated direction.

Figure 4-13 Highlight the connection line for rearranging

2. For creating a break-point, right click the line at the point where the break point is desired. From the pop-up menu, click on break point.

4.9 HOW TO READ CONTAMINANT CONCENTRATION FROM EXCEL FILE

This feature allows user to import concentration of contaminants in the influent object from an EXCEL file. This is useful when concentrations of a large group of contaminants are recorded in EXCEL sheet and is required for analysis. This feature saves time in data entry and eliminates chances of erroneous input. Following procedure may be used to import contaminant concentration data. In the following example, we will be importing the contaminant and their concentration shown in the March2012 worksheet of the EXCEL workbook (**Figure 4-14**). [Note: the contaminants names in the EXCEL sheet should correspond to the exact name in the database. If a contaminant does not exist in the database, it will not be imported from the worksheet. Also use only the A, B, C columns for contaminant name, concentration and unit respectively. The concentration unit shall be the one that is recognized in TOXCHEM (g/m3, mg/L, ug/L, g/L or ppm)].

8) - (2 -)		lata.xls [Compa		-			 ns @ .					
	Hom			≣ ⊡ * \$	eral 🔹	A Para		Σ · A Z Sort &	Find & Select *					
		B27	7	• (•	f _x					≈				
A B C D E F G														
1	Contami	nants		Concentration	Unit									
-	Methano	d			3 mg/L									
_	Ethanol				2 mg/L									
	Acetone				7 mg/L									
-	Acetonit				3 mg/L									
			Dichloromethane		5 mg/L					=				
		ertiary-Butyl	Ether		2 mg/L									
	Ethylacet				7 mg/L									
	Tetrahyd				5 mg/L									
	Triethyla	mine			1 mg/L									
	Toluene				5 mg/L									
	Butyl Ace				2 mg/L									
13	Ethylene	Giycol		194	1 mg/L									
14														
15														
	► N M	arch2012 🦯	April2012 📈 May20	12 / 💱						▶				
Rea	dy 🎦						▦▯▯	.00% 🕞—						

Figure 4-14 EXCEL data file

Click on the Contaminants tab in the Influent object Edit Parameters menu (Figure 4-15).

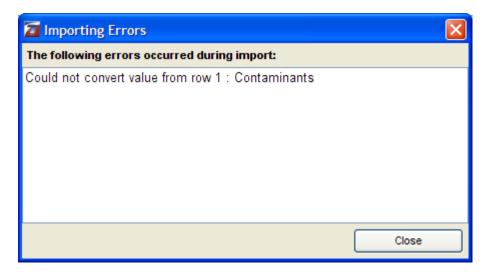

🛛 Wastewater Influent	$\mathbf{ imes}$
Data Entry Contaminants Flow Split	_
Contaminants Add/Remove Import	
No contaminants currently specified.	
Accept Cancel	

Figure 4-15 Import button in wastewater influent

- Click on Import button to import the contaminant concentrations from the EXCEL worksheet. Select the location where the EXCEL data file is stored, select the file and open it.
- 2. A Worksheet Selection window (**Figure 4-16**) pops up to confirm which sheet to import data from. In this example March 2012 is selected. Press Accept.
- 3. An error window (**Figure 4-17**) will appear and report any rows are that are not imported due to contaminant name or unit mismatch. In this example the first row contains the header in the worksheet and this is ignored. Close the error window.

🖬 Worksheet Selection 🛛 🔀
Select the sheet to import the data from:
March2012
April2012
May2012
Accept Cancel

Figure 4-16 Sheet Selection for data import

Figure 4-17 Error reporting window

🗃 Wastewater Influent		X
Data Entry Contaminants Flow Split		
Contaminants Add/Remove Import		
Methanol	3.8	mg/L 👻
Ethanol	4.2	mg/L 👻
Acetone	17.0	mg/L 👻
Acetonitrile	203.0	mg/L 👻
Methylene Chloride, Dichloromethane	0.5	mg/L 👻
Methyl-Tertiary-Butyl Ether	22.0	mg/L 🝷 📄
Ethylacetate	177.0	mg/L 👻
Tetrahydrofuran	5.0	mg/L 👻
Triethylamine	14.0	mg/L 👻
Toluene	6.0	mg/L 👻
Butyl Acetate(-N)	0.2	mg/L 👻
Ethylene Glycol	194.0	mg/L 👻 🔽
Q	Accept	Cancel

Figure 4-18 Imported contaminant and concentrations (March2012)

Now, if we use the import feature one more time and import the data from the April2012 sheet, the concentrations changes as in **Figure 4-19**.

🖉 Wastewater Influent		×						
Data Entry Contaminants Flow Split								
Contaminants Add/Remove Import								
Methanol	5.2	mg/L 👻						
Ethanol	6.3	mg/L 👻						
Acetone	14.0	mg/L 👻						
Acetonitrile	180.0	mg/L 👻						
Methylene Chloride, Dichloromethane	0.1	mg/L 👻						
Methyl-Tertiary-Butyl Ether	18.0	mg/L 🝷 📄						
Ethylacetate	170.0	mg/L 👻						
Tetrahydrofuran	3.0	mg/L 👻						
Triethylamine	10.0	mg/L 👻						
Toluene	4.0	mg/L 👻						
Butyl Acetate(-N)	0.1	mg/L 👻						
Ethylene Glycol	210.0	mg/L 👻 🔽						
Q	Accept	Cancel						

Figure 4-19 Imported contaminant and concentrations (April2012)

4.10 HOW TO VIEW STREAM PROPERTY QUICKLY

To view the properties of a stream, right click on the stream and select "View Stream States". The pop-up window will show the calculated values of the stream properties as in Figure 4-20.

ATTACK TO A CONTRACT OF A C	(助 略	XIP	R & R 4		proteininent Display :	Acetane		3.	Erria	seions for Al	Contaminants :	17164.9 9/d	
risalen Hetspota : 🛛	>5.0% = ×	2.5% >1.0%	-1.0% 8:										
l influenta		:				1	Label		sl_0		Guick Adjust		E
The Versterneter b	1000						Flow Rate		287.24	m3/d	a second second		82
A CONTRACTOR	TRUE T						Total Suspended	Collida	30000.0	mot	Influent ABC Flow Rate		
2												0.0 m3/6	
Sudge When	rt .				A STRAT	And Address of the Ad	Suspended Solid			90			
-87					6		Volatile SS Fractio	in .	0.682659	G 1	Suspended So	ids 0.0 malt	
The Art Manual					Y .		Wastewater DOC		0.0	mgt.	1	e.o mg/L	
Ar insuent							OlivGrease		0.0	mgL	MLSS		
					1000		Organic Chemica	Mara	161.73	010	300	0.0 mg/L	
PAC Addition							Organic Chemica		438.443	ugL	Process Air Fig		
-						1.2				- C - L	1000	0.0 m3/hr	
							Organic Chemica	1-01	528.235	ugt	Sludge SS Con	centration.	
					2.0		Vietal - Cl		0.0	ugL	600	0.0 mg/L	
		Han	water influent	Equalization	Primary Clark	ter l	Metal - Ct		100	ugt.			
		_	- M .	- FITTER OF			Vetal Mass			94			
			A COLOR		E S		Precipitated Metal		0.0	mot.			
			- W.		Y	- IS				1000			
				N.		and the second s	Powdered Activate	of Carbon	0.0	mgL			
						10.0	Temperature		37.5364	deg C			
							ИКр		0.0	LID			
						9	Solubility		0.0	mot.			
				8			oH.		7.0				
					Post	Avaend	Fraction of Solubli	Chaminal	0.830015	2 I I			
and the state of the					🔶 Delete Cr	onnection .				22			
Collection					and the second se	to day Pharman			anic Solid 0.169985				
Equalization/Storag					1000000000	1. S. D. S.	Fraction of Sorber	1 Chemical - Of	0.0	3			
Preliminary Treatmen Biological Treatmen				1.0	Create Br	eakpoint	Fraction of Sorber	t Chemical - DOG	0.0	14 L			
Solds Digestion	1. C				View Stre	am States	Fraction of Sorber	Chemical - PAC	0.0				
Dewatering						and an order of the				10			
Air Treatment													
Diosolds Handling		1.000								-	11		
Illiscelaneous		(K)	*1										
Effuent		E /4	DBAIN								F		
(m)	and contra												
	B												
Overall Hass Balance	· · · · · · · · · · · · · · · · · · ·		Contaminant Fate								125		
	Hass.	% of total	2 2 10	Longerson	Source (g/d)	2	1		going (g/d)			ate (grd)	
Centeninent Load	(9/8)	100.0	2. 2.25	influent Air	Influent	Formed	Ar	Wastewater		01	Removed	Diodegrade	ied
		0.0	Primary Clarifier	0.0	26075.5 208.838	0.0	290.745	25633.1 208.838		0.0	0.0	0.0	_
otal incoming			Point	0.0	208.838	0.0	0.0	206.838		0.0	0.0	0.0	-
otal Incoming otal Formed	0.0	15.2544	A lo S Minamb TO										
otal Incoming Iotal Formed Io Air Io Wastewater	0.8 4576.33 200.831	0.669436	Air Effluent(2) Air Treatment	1.88279	0.0	0.0	0.188279	0.0	0.0	0.0	1.69451	0.0	_
otal Incoming Iotal Formed Io Air Io Wastewater Io Studge	0.8 4576.33 200.831 10.996	0.009430 0.0300534	Air Effluent(2) Air Treatment Anserobic Digester	1.88279	360.568	0.0	1.88279	0.596384	358.089	0.0	0.0	0.0	_
Fotal Incoming Fotal Formed Fo Air Fo Wasterwater Fo Studge Fo Dil	0.8 4576.33 200.831	0.669436	Air Treatment	1.88279					358.089 0				

Figure 4-20 Viewing Stream Properties

4.11 HOW TO IMPORT FILE DATA FOR VARIABLES ON QUICK ADJUST TOOLBAR

Toxchem allows user to export and import data of model variables from an EXCEL file. For the export and import of variable data to wok, the selected variables shall be available on the Quick Adjust Toolbar. A data import file with correct format can be created by first exporting data from the Quick Adjust Toolbar to an EXCEL file. In the Tutorial example, an export EXCEL file can be created by clicking on the Options button on Quick Adjust Toolbar and selecting "Export Values to File". Save the file with appropriate name. The data format in the saved file will appear as shown in Figure 4-21.

፟፟፟፟፟፟ 🗶 🤊 • (° - 😤 =	tutorial_QuickAdjus	st.xls [Compatibility N	1ode] - Microsoft Exc	el	- C - X	2
File Home Insert Pa	ge Layout Formula:	s Data Reviev	v View PDF		a 🕜 🗆 🗗	23
Arial 10 $Paste$ M M M M M	∉≢ ≫-	✓ \$ ✓ % ,	A Styles ♥ Delete ♥ ♥ Format ♥	∑ * ŽT m ↓ Sort & Find & 2 * Filter * Select *		
Clipboard 😨 Font	Alignment	🖬 Number 🖼	Cells	Editing		v
A	B	С	D	E	F	
7 AS-Diffused 8 Secondary Clarifier 9 Secondary Clarifier 10 11	Variable Flow Rate Suspended Solids Process Air Flow Ra MLSS Sludge SS Concentr	250 10000 3000	Unit m3/d mg/L m3/hr mg/L mg/L			
12 13 14 15 Ready				III I I 100% —	► []	-

Figure 4-21 Excel File Created Using Data Export Feature

For a situation where monthly emission reports needs to be prepared, a user can create data input files for each month by changing the observed operational values. For example, a data file for March 2013 can be created by changing the values and saving the file as tutorial_InputData_March2013.xls as shown in Figure 4-22.

🔣 🚽 🌱 🤉 😢 - 😢 🚽 🛛 t	utorial_InputData_Marc	h2013.xls [Compatibi	ity Mode] - Microsoft	Excel	- O -X
File Home Insert Pa	ige Layout Formula	s Data Reviev	v View PDF	c	x 😗 🗆 🗗 X
$Arial$ 10 $Paste$ $arial$ 10 B I \underline{U} A A	、 = = = = = A、 E = = 極 律律 ≫、	- \$ - % ,	A Insert ▼ Styles ▼ Delete ▼	Σ · Sort & Find & 2 · Filter · Select ·	
Clipboard 🗔 Font	🗟 Alignment	🖼 Number 🗔	Cells	Editing	
C10 - (**	f_{x}				~
A	В	С	D	E	F 🚍
1 Process 2 Influent ABC	Variable	Value	Unit		î
2 Influent ABC 3 Wastewater Influent	Flow Rate	40000	m3/d		
4 Wastewater Influent	Suspended Solids		mg/L		
5 AS-Diffused			Ŭ		
6 AS-Diffused	Process Air Flow Ra		m3/hr		=
7 AS-Diffused	MLSS	2500	mg/L		
8 Secondary Clarifier 9 Secondary Clarifier	Sludge SS Concentr	5000	mg/L		
10	Sludge 33 Concent	5000	ing/L		
11			ē		
12					
13					
14					
15 (↓ ▶ ▶ Sheet 1 / ℃					▼
Ready					
					· • • • ;#

Figure 4-22 Data Input File for March 2013

Once the input data file is created, the file data can be imported to the variables on the Quick Adjust Toolbar. The data can be imported by accessing the "Import Values From File" command from the Options button on the Quick Adjust Toolbar. Select the correct input file from where data needs to be imported (tutorial_InputData_March2013.xls). After the import, the data values on the Quick Adjust Toolbar shall appear as shown in Figure 4-23.

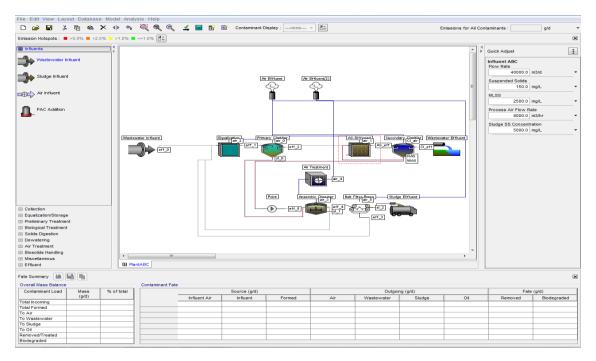


Figure 4-23 Variable Values On Quick Adjust Toolbar After Data Import

5. APPENDIX-A

5.1 Version 4

Some of the parameter values which were hard coded in V3 simulation system are now provided in the advanced parameter setting tab. Based on experience over the years, some of these hard coded values were updated with new defaults in TOXCHEM V4 (and later). The changes in the parameter default values are as shown in **Table 5-1**. These new default values are carried forward in TOXCHEM V4.3.

5.2 Version 4.1

Corrections to EPA air emission database compounds: Please refer to Technical Memorandum No. 2012-001. These updates were made in TOXCHEM V4.2.

Corrections were made in the oxygen density estimation procedures. Please refer to Technical Memorandum No. 2012-002.

5.3 Version 4.3

The technical literature for values of Henry's law coefficients for ammonia and hydrogen sulfide was reviewed extensively. Based on the data reviewed, new values of Henry's law coefficients of 0.000661 L_{Iiq}/L_{gas} for ammonia and 0.4035 L_{Iiq}/L_{gas} for hydrogen sulfide were adopted and carried forward in V4.3. The detailed documentation regarding the selection of the values for these two compounds is provided in Technical Memorandum No. 2014-001.

Table 5-1 Changes in default parameter values

Unit Process/Parameter	Unit	V3 Default	V4 (and later) Default	Explanation
Drop Structure - Closed				
Kg/KI Ratio for Drop		3	100	Same as Weir
Drop Structure - Open				
Kg/KI Ratio for Drop		3	100	Same as Weir
Grit Chamber				
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid
Equalization - Mixed/Aerated				
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid
Dissolved Air Flotation				
Oxygen Transfer Efficiency	%	50	25	OTE reduced based on experience
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid
Activated Sludge - Diffused Aeration				
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid
Activated Sludge - Diffused/Mechanical Aeration				
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid
Trickling Filter				
Kg/KI Ratio		4	40	Same as mechanical aeration in which liquid droplets come in contact with air
Biofilm Thickness	mm	0.1	1	Based on experience from modeling fixed film processes
Stagnant Liquid Layer Thickness	mm	0.1	0.05	Based on experience from modeling fixed film processes
Rotating Biological Contactor				
Kg/KI Ratio		4	40	Same as mechanical aeration in which liquid droplets come in contact with air
Biofilm Thickness	mm	0.1	1	Based on experience from modeling fixed film processes
Stagnant Liquid Layer Thickness	mm	0.1	0.05	Based on experience from modeling fixed film processes
Channel				
Oxygen Transfer Efficiency	%	2	6	
Cooling Tower				
Kg/KI Ratio		700	40	Same as mechanical aeration in which liquid droplets come in contact with air
Volatilization Mass Transfer Coefficient	m/d	0.8	0.2	Same value as in the trickling filter
Aerobic Digester				
Kg/KI Ratio for Diffused System		40	3	Air bubble coming in contact with Liquid